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Conventional non-stationary RL environment

Figure 1: Iterative process: collect data, train policy

Agent’s timeline = Environment’s timeline = episode
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Time synchronization assumption

Agent’s timeline → episode

Enviroment’s timeline → wall-clock time

Figure 2: Environment has its own wall-clock time
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Time synchronization assumption

Figure 3: Different traning time makes agent encounteres different environment
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Motivation example
For fixed wall clock time duration 0 [sec] ∼ 10 [sec], robot (a),(b) are
reaching a gray box that is moving for every wall-clock time.

robot strategy : predict the future box position and execute optimized
policy.

Figure 4: Trade-off between Model accuracy and policy accuracy

What is optimal k?
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Contribution & Overview

Environmental changes occur over wall-clock time (t) rather than episode
progress (k), where wall-clock time signifies the actual elapsed time
within the fixed duration t ∈ [0,T ].

In existing works, at episode k , the agent rollouts a trajectory and trains a
policy before transitioning to episode k + 1.
In the context of the time-desynchronized environment, however, the
agent at time tk allocates ∆t for trajectory generation and training,
subsequently moves to the next episode at tk+1 = tk +∆t.

Despite a fixed total episode (K ), the agent accumulates different
trajectories influenced by the choice of interaction times (t1, t2, ..., tK ),
significantly impacting the sub-optimality gap of policy.

We propose a Proactively Synchronizing Tempo (ProST) framework that
computes optimal {t1, t2, ..., tK}(= {t}1∶K).
Our main contribution is that we show optimal {t}1∶K strikes a balance
between the policy training time (agent tempo) and how fast the
environment changes (environment tempo).
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Time-elapsing Markov Decision Process

Conventional MDP

MDP at episode k isMk ∶= ⟨S,A,H,Pk ,Rk⟩
For total episode K , agent interacts with {M1,M2, ...,MK}

Time elapsing MDP

Wall clock time : t ∈ [0,T ]
MDP at wall cock time t isMt = ⟨S,A,H,Pt,Rt⟩
For given T , agent chooses K , then chooses {t1, t2, ..., tK} ∈ [0,T ], then
interacts with {Mt1 ,Mt2 , ...,MtK }
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Time-elapsing variation budget

Conventional variation budget (VB)

VB quantifies the environment’s non-stationarity
▸ Bp ∶= ∑K−1

k=1 sups,a ∣∣Pk+1(⋅ ∣s, a) − Pk(⋅ ∣s, a)∣∣1
▸ Br ∶= ∑K−1

k=1 sups,a ∣Rk+1(s, a) − Rk(s, a)∣
Time elapsing variation budget

Assume policy training time ∆π = interval ∆t = tk+1 − tk ,∀k
▸ Bp(∆π) ∶= ∑K−1

k=1 sups,a ∣∣Ptk+1(⋅ ∣s, a) − Ptk (⋅ ∣s, a)∣∣1
▸ Br(∆π) ∶= ∑K−1

k=1 sups,a ∣Rtk+1(s, a) − Rtk (s, a)∣

Assumption (Drifting environment)

∃c , αp, αr ≥ 0 that satisfies Bp(c∆π) = cαpBp(∆π), Br(c∆π) = cαrBr(∆π).
We call αp, αr as drifting constants
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Overview

For given t ∈ [0,T ], ProST framework computes K∗, {t∗1 , t∗2 , .., t∗K∗}, then
{πt∗1 , πt∗2 , .., πt∗

K∗
} into two components

Time optimizer

Future policy optimizer

Figure 5: ProST framework
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Preliminary

Definition (Value function)

For any given policy π and the MDPM(k) , We denote the state value

function at episode k as V π,k ∶ S → R

V π,k(s) ∶= EM(k),π [
H−1

∑
h=0

γhrkh ∣ s0 = s]

Definition (Dynamic regret)

In non-stationary MDPs, the optimality of the policy is evaluated in terms of
dynamic regret R ({π(1), π(2), ..., π(K)},K).

R ({πk}(1∶K),K) ∶=
K

∑
k=1

(V ∗,k(s0) −V πk ,k(s0))
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Future policy optimizer

For given tk , tk+1, it computes a near-optimal policy of tk+1 at time tk

Assumption (Observable non-stationary set O)

Non-stationarity ofMtk be fully characterized by otk ∈ O.

Estimate the future MDP model and optimize.

At t =tk
During t ∈ (tk , tk+1)

1 ô(k+1) = f(k)({õ}(k−w+1,k))
2 (R̂(k+1)(s, a), P̂(k+1)(⋅∣s, a)) = g(k)(s, a, ôk+1)
3 π̂(k+1) ← M̂(k+1) = ⟨S,A,H, P̂(k+1), R̂(k+1), γ⟩

At t =tk+1
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Time optimizer

For given T ,

Time optimizer computes optimal training time ∆∗π ∈ (0,T )
K∗ = ⌊T /∆∗π⌋
t∗k = t1 +∆∗π ⋅ (k − 1) for all k ∈ [K∗]

Definition (Model prediction error)

At time tk , Future policy optimizer generates M̂(k+1) and computes π̂(k+1).
For any (s, a), denote the state value function and state action value function

of π̂(k+1) in M̂(k+1) at step h ∈ [H] as V̂ (k+1)h (s) and Q̂
(k+1)
h (s, a). Then, we

define model prediction error ιk+1h (s, a) as follows.

ιk+1h (s, a) = (R(k+1) + γP(k+1)V̂
(k+1)
h+1 − Q̂(k+1)h ) (s, a)

Hyunin Lee (UCB) Tempo Adaptation September 22, 2023 16 / 24



Time optimizer

Strategy : ∆∗π is a minimizer of the dynamic regret’s upperbound

Analysis on finite space ∣S ∣, ∣A∣ <∞→ ProST-T

Theorem (ProST-T dynamic regret R)

Let ιKH = ∑
K−1
k=1 ∑H−1

h=0 ιk+1h (sk+1h , ak+1h ) and ῑK
∞
∶= ∑K−1

k=1 ∣∣ῑk+1∞ ∣∣∞, where ιKH is a
data-dependent error. For given p ∈ (0, 1), the dynamic regret of the forecasted
policies {π̂k+1}(1∶K−1) of ProST-T is upper bounded with probability 1 − p/2,

R ({π̂k+1}(1∶K−1),K)) ≤RI +RII + CI [p] ⋅
√
K − 1

where RI = ῑK∞/(1 − γ) − ιKH , RII = CII [∆π] ⋅ (K − 1), and CI [p],CII [∆π] are
functions of p, ∆π, respectively.

RI ← Forecasting model error ← B(∆π) (rate of environment’s change)

RII ← Policy optimization error ← ∆π (rate of agent’s adaption)

∆∗π strikes a balance between RI and RII

Hyunin Lee (UCB) Tempo Adaptation September 22, 2023 17 / 24



∆π bounds for sublinear RII

∆∗π should satisfy sublinear dynamic regret to K

δ : approximation gap

τ : entropy regularization parameter

η : learning rate

Proposition (∆π bounds for sublinear RII )

From the given MDP, we have a fixed horizon H. For any ϵ > 0 that satisfies
H = Ω (log ((r̂max ∨ rmax)/ϵ)), we choose δ, τ, η to satisfy
δ = O (ϵ) , τ = Ω (ϵ/ log ∣A∣) , η ≤ (1 − γ) /τ . Now, set NII as follows.

NII = {n ∣ n >
1

ητ
log(C1(γ + 2)

ϵ
) ,n ∈ N}

Then,
RII ≤ 4ϵ(K − 1).

Any ϵ = O((K − 1)α−1) for any α ∈ [0,1) satisfy sublinear RI .
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RI ← Forecasting model error ← B(∆π)

SW-LSE : Sliding window regularized LSE

Theorem (Dynamic regret RI when f = SW-LSE)

For given p ∈ (0,1), if the exploration bonus constant β and regularization

parameter λ satisfy β = Ω(∣S ∣H
√
log (H/p)), λ ≥ 1, then the RI is bounded

with probability 1 − p,

RI ≤ CI [B(∆π)] ⋅w + Ck ⋅
√

1

w
log (1 + H

λ
w)

where CI [B(∆π)] = (1/(1 − γ) +H) ⋅Br(∆π)+ (1+Hr̂max)γ/(1−γ) ⋅Bp(∆π),
and Ck is a constant on the order of O(K).
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∆π bounds for sublinear RI

Proposition (∆π bounds for sublinear RI )

Denote B(1) as environment tempo for one policy iteration update. If
environment satisfies Br(1) +Bp(1)r̂max/(1 − γ) = o(K) and we choose
w = O((K − 1)2/3/(CI [B(∆π)])2/3) and set NI to be

{n ∣ n < K , n ∈ N}

Then,

RI = O (CI [B(∆π)]1/3 (K − 1)2/3
√
log ((K − 1)/CI [B(∆π)]))

and also satisfies sublinear RI
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∆∗π strikes a balance between RI and RII

RI upperbound is increasing on a interval NI ∩NII

RII upperbound is decreasing on a interval NI ∩NII

Theorem (Optimal tempo ∆∗π)

Let kEnv = (αr ∨ αp)2 CI [B(1)], kAgent = log (1/(1 − ητ))C1(K − 1)(γ + 2)
where comes from NII . Then ∆∗π depends on the environment’s drifting
constants ; case1: αr ∨ αp = 0, case2: αr ∨ αp = 1, case3: 0 < αr ∨ αp < 1,
case4: αr ∨ αp > 1.

Case1: ∆∗π =∞, Case2: ∆∗π = log1−ηγ (kEnv/kAgent) + 1

Case3 & 4: ∆∗π = exp (−W [−
log (1−ητ)

max (αr ,αp)−1
]) if kAgent = (1 − ητ)kEnv.
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Experiment result

1 Performance : Four benchmark methods VS ProST

2 Ablation study : selection of f ,g and optimal traning time
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Performance

Benchmark methods

MBPO : state of the art model-based policy optimization.

Pro-OLS : policy optimization algorithm that predicts future V .

ONPG : adaptive algorithm that fine-tunes the policy on current data.

FTRL : adaptive algorithm that maximizes the performance on all
previous data.

Table 1: Average reward returns

Speed B(G) Swimmer-v2 Halfcheetah-v2 Hopper-v2

Pro-OLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G

1 16.14 -0.40 -0.26 -0.08 -0.08 0.57 -83.79 -85.33 -85.17 -24.89 -19.69 98.38 95.39 97.18 92.88 92.77
2 32.15 0.20 -0.12 0.14 -0.01 1.04 -83.79 -85.63 -86.46 -22.19 -20.21 98.78 97.34 99.02 96.55 98.13
3 47.86 -0.13 0.05 -0.15 -0.64 1.52 -83.27 -85.97 -86.26 -21.65 -21.04 97.70 98.18 98.60 95.08 100.42
4 63.14 -0.22 -0.09 -0.11 -0.04 2.01 -82.92 -84.37 -85.11 -21.40 -19.55 98.89 97.43 97.94 97.86 100.68
5 77.88 -0.23 -0.42 -0.27 0.10 2.81 -84.73 -85.42 -87.02 -20.50 -20.52 97.63 99.64 99.40 96.86 102.48
A 8.34 1.46 2.10 2.37 -0.08 0.57 -76.67 -85.38 -83.83 -40.67 83.74 104.72 118.97 115.21 100.29 111.36
B 4.68 1.79 -0.72 -1.20 0.19 0.20 -80.46 -86.96 -85.59 -29.28 76.56 80.83 131.23 110.09 100.29 127.74

*Whole training procedure is in Appendix
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Ablation study

Figure 6: (a) Optimal ∆∗π. (b-1) Different forecaster f (ARIMA, SA). (b-2) The
Mean squared Error (MSE) model loss of four ProST-G with different
forecasters(ARIMA and three SA) and the MBPO. x-axis are all episodes.
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