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1 Motivation

Trust region optimization is dedicated to solving non-convex optimization problem. Let’s first start
with any non-covex function f : Rn → R. For any point xk ∈ Rn, our mission is computing
the next iteration point xk+1 that guanratess a monotonic decrease, i.e. f(xk+1) < f(xk). Let
xk+1 = xk + pk. The taylor expansion around xk is given as

f(xk + p) = fk + g⊤k p+
1

2
p⊤∇2f(xk + tp)p (1)

where fk = f(xk) and gk = ∇f(xk) and t ∈ (0, 1) is a unknown constant. since f(xk + tp) is an
unknown due to a constant t, let’s approximate it as symmetric Bk, and let the approximate of
f(xk + p) as mk as follows.

mk(p) = fk + g⊤k p+
1

2
p⊤Bkp (2)

Then, we have the following approximated optimization problem with a bounded region.

min
p∈Rn

mk(p) = fk + g⊤k p+
1

2
p⊤Bkp

s.t. ||p|| ≤ ∆k

(3)

where ∆k > 0 is the trust-region radius. I would like to note that when 1) Bk is positive definite
2) ||B−1

k gk|| ≤ ∆k then the Problem 3 have the unconstrained minimum as pBk = −B−1
k gk. We call

pBk the full step. However, the problem is that this is too much computational expense, especially
computing the −B−1

k . This really necessaite to compute approximate solution.

2 Outline of Trust-region approach

One key graident of trust-region optimisation is the strategy for choosing trust region radius ∆k.
We base this choice on the agreement between the approimaximated model mk and the objective
function f . Given a step pk = argminp∈Rn mk(p), the minimum step of problem 3, we define the
ratio as follows.

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(4)
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where we call the numerator as actual reduction and the denominator as the predicted reduction.
I note that the denominoator is always non-negative since pk is the argmin of mk. Therefore, we
have the following cases to determine how good our approximate mk is as follows. Before, I note
that if ρk < 0, then this means f(xk + pk) > f(xk), so the step must be rejected.

case1. When ρk ≈ 1: this means mk is a good approimator over this step. So it is safe to
expand the trust region.

case2. When ρk ≈ 0 and > 0: keep the trust region

case3. When ρk ≤ 0: we should shrink the trust region.

Before moving on further, let’s characterize the exact solutions of problem 3 by the following
theorem.

Theorem 1. p⋆ ∈ Rn is the global solution of the problem (3) if and only if p⋆ is feasible
and there exists a scalar λ ≥ 0 such that the following conditions are satisfied.

• (B + λI)p⋆ = −g

• λ(∆− ||p⋆||) = 0

• (B + λI) is a PSD matrix.

3 Algorithsm based on cauchy point

3.1 Cauchy point: sufficient reduction

Again, we are interested in finding an optimal solution to problem 3. First, it is enough to find
an approximate solution pk that lies within the trust region and gives a sufficient reduction. This
sufficient reduction is quantified as cauchy point, denoted as point pck.

Algorithm 1 (Cauchy point calculation). Find vector p⋆k that solves linearized version of
problem 3, that is,

psk = argmin
p∈Rn

fk + g⊤k p s.t. ||p|| ≤ ∆k. (5)

Then calculate the scalar τk > 0 that minimizes mk(τkp
s
k), that is

τk = argmin
τ≥0

mk(τp
s
k) s.t. ||τpsk|| ≤ ∆k (6)

Then finally set pck = τkp
s
k.

The closed souiltion of cauchy point calculated by Algorihtm 1 is given as follows.

pCk = −τk
∆k

||gk||
gk (7)
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where

τk =

{
1 if k⊤k Bkgk ≤ 0

min(||gk||3/(∆kg
⊤
k Bkgk), 1) otherwise

3.2 Improving on the Cauchy points

What are some problems of using cauchy point pck as the approximated solution of problem 3?

1. Cauchy point is merely steepest decent method. It is known that steepest descent performs
poorly even if an optimal step length is used at each iteration.

2. Cauchy point does not utilized the Bk well. Rapid convergence can be expected when utilizing
Bk as determining the direction of the step as well as its lenghth.

3.2.1 The dogleg method

First, note that this method assumptions Bk should be positive definite. Let’s recall the problem
3 and rewrite the solution p⋆k as the function of radius ∆.

p⋆k(∆) =

{
pB , if ∆ ≥ ||pB ||
−∆ g

||g|| , if ∆ is small
(8)

For the case of small ∆, the quadratic term of Problem 3 is negligible, so the solution is based on
minimize the linearzed version of mk. Since p⋆k is a function of radius ∆, it is easy to check that
p⋆k is a curved trajectory. Then the dogleg method approximates is as the combination of two line
segments PU and PB as follows.

p̃(τ) =

{
τpU , 0 ≤ τ ≤ 1

pU + (τ − 1)(pB − pU ), 1 ≤ τ ≤ 2
(9)

where pU = − g⊤g
g⊤Bg

g.

3.2.2 Two-diemnsional subspace minimization

It searches over the entire two-diemensional subspace spanned by pU and pB as follows.

min
p∈Rn

mk(p) = fk + g⊤k p+
1

2
p⊤Bkp

s.t. ||p|| ≤ ∆k, p ∈ span[gk, B
−1
k gk]

(10)

3.3 Global convergence
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