Trust region Optimization

How principle of trust region opt. helps to grasp trust region policy opt.

Hyunin Lee

June 2024

1 Motivation

Trust region optimization is dedicated to solving non-convex optimization problem. Let's first start with any non-covex function $f : \mathbb{R}^n \to \mathbb{R}$. For any point $x_k \in \mathbb{R}^n$, our mission is computing the next iteration point x_{k+1} that guarantees a monotonic decrease, i.e. $f(x_{k+1}) < f(x_k)$. Let $x_{k+1} = x_k + p_k$. The taylor expansion around x_k is given as

$$f(x_k + p) = f_k + g_k^{\top} p + \frac{1}{2} p^{\top} \nabla^2 f(x_k + tp) p$$
(1)

where $f_k = f(x_k)$ and $g_k = \nabla f(x_k)$ and $t \in (0, 1)$ is a unknown constant. since $f(x_k + tp)$ is an unknown due to a constant t, let's approximate it as symmetric B_k , and let the approximate of $f(x_k + p)$ as m_k as follows.

$$m_k(p) = f_k + g_k^{\top} p + \frac{1}{2} p^{\top} B_k p$$
⁽²⁾

Then, we have the following approximated optimization problem with a bounded region.

$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + g_k^\top p + \frac{1}{2} p^\top B_k p$$

s.t. $||p|| \le \Delta_k$ (3)

where $\Delta_k > 0$ is the trust-region radius. I would like to note that when 1) B_k is positive definite 2) $||B_k^{-1}g_k|| \leq \Delta_k$ then the Problem 3 have the unconstrained minimum as $p_k^B = -B_k^{-1}g_k$. We call p_k^B the full step. However, the problem is that this is too much computational expense, especially computing the $-B_k^{-1}$. This really necessaite to compute *approximate* solution.

2 Outline of Trust-region approach

One key graident of trust-region optimisation is the strategy for choosing trust region radius Δ_k . We base this choice on the agreement between the approximated model m_k and the objective function f. Given a step $p_k = \arg \min_{p \in \mathbb{R}^n} m_k(p)$, the minimum step of problem 3, we define the ratio as follows.

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)} \tag{4}$$

where we call the numerator as actual reduction and the denominator as the predicted reduction. I note that the denominoator is always non-negative since p_k is the argmin of m_k . Therefore, we have the following cases to determine how good our approximate m_k is as follows. Before, I note that if $\rho_k < 0$, then this means $f(x_k + p_k) > f(x_k)$, so the step must be rejected.

- case1. When $\rho_k \approx 1$: this means m_k is a good approximator over this step. So it is safe to expand the trust region.
- case2. When $\rho_k \approx 0$ and > 0: keep the trust region
- case3. When $\rho_k \leq 0$: we should shrink the trust region.

Before moving on further, let's characterize the exact solutions of problem 3 by the following theorem.

Theorem 1. $p^* \in \mathbb{R}^n$ is the global solution of the problem (3) if and only if p^* is feasible and there exists a scalar $\lambda \geq 0$ such that the following conditions are satisfied.

• $(B + \lambda I)p^* = -g$

•
$$\lambda(\Delta - ||p^{\star}||) = 0$$

• $(B + \lambda I)$ is a PSD matrix.

3 Algorithsm based on cauchy point

3.1 Cauchy point: sufficient reduction

Again, we are interested in finding an optimal solution to problem 3. First, it is enough to find an approximate solution p_k that lies within the trust region and gives a sufficient reduction. This sufficient reduction is quantified as cauchy point, denoted as point p_k^c .

Algorithm 1 (Cauchy point calculation). Find vector p_k^* that solves linearized version of problem 3, that is,

$$p_k^s = \underset{p \in \mathbb{R}^n}{\arg\min} f_k + g_k^\top p \quad \text{s.t. } ||p|| \le \Delta_k.$$
(5)

Then calculate the scalar $\tau_k > 0$ that minimizes $m_k(\tau_k p_k^s)$, that is

$$\tau_k = \underset{\tau \ge 0}{\arg\min} m_k(\tau p_k^s) \quad \text{s.t. } ||\tau p_k^s|| \le \Delta_k \tag{6}$$

Then finally set $p_k^c = \tau_k p_k^s$.

The closed souiltion of cauchy point calculated by Algorithm 1 is given as follows.

$$p_k^C = -\tau_k \frac{\Delta_k}{||g_k||} g_k \tag{7}$$

where

$$\tau_k = \begin{cases} 1 & \text{if } k_k^\top B_k g_k \le 0\\ \min(||g_k||^3 / (\Delta_k g_k^\top B_k g_k), 1) & \text{otherwise} \end{cases}$$

3.2 Improving on the Cauchy points

What are some problems of using cauchy point p_k^c as the approximated solution of problem 3?

- 1. Cauchy point is merely steepest decent method. It is known that steepest descent performs poorly even if an optimal step length is used at each iteration.
- 2. Cauchy point does not utilized the B_k well. Rapid convergence can be expected when utilizing B_k as determining the direction of the step as well as its length.

3.2.1 The dogleg method

First, note that this method assumptions B_k should be positive definite. Let's recall the problem 3 and rewrite the solution p_k^* as the function of radius Δ .

$$p_k^{\star}(\Delta) = \begin{cases} p^B, & \text{if } \Delta \ge ||p^B|| \\ -\Delta \frac{g}{||g||}, & \text{if } \Delta \text{ is small} \end{cases}$$
(8)

For the case of small Δ , the quadratic term of Problem 3 is negligible, so the solution is based on minimize the linearzed version of m_k . Since p_k^{\star} is a function of radius Δ , it is easy to check that p_k^{\star} is a curved trajectory. Then the dogleg method approximates is as the combination of two line segments P^U and P^B as follows.

$$\tilde{p}(\tau) = \begin{cases} \tau p^U, & 0 \le \tau \le 1\\ p^U + (\tau - 1)(p^B - p^U), & 1 \le \tau \le 2 \end{cases}$$
(9)

where $p^U = -\frac{g^\top g}{g^\top B g} g$.

3.2.2 Two-diemnsional subspace minimization

It searches over the entire two-dimensional subspace spanned by p^U and p^B as follows.

$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + g_k^\top p + \frac{1}{2} p^\top B_k p$$

s.t. $||p|| \le \Delta_k, \ p \in \operatorname{span}[g_k, B_k^{-1}g_k]$ (10)

3.3 Global convergence

References