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Beyond Exact Gradients: Convergence of Stochastic
Soft-Max Policy Gradient Methods with Entropy

Regularization
Yuhao Ding, Junzi Zhang, Hyunin Lee, and Javad Lavaei

Abstract—Entropy regularization is an efficient technique for
encouraging exploration and preventing a premature convergence
of (vanilla) policy gradient methods in reinforcement learning (RL).
However, the theoretical understanding of entropy regularized
RL algorithms has been limited. In this paper, we revisit the
classical entropy regularized policy gradient methods with the soft-
max policy parametrization, whose convergence has so far only
been established assuming access to exact gradient oracles. To go
beyond this scenario, we propose the first set of (nearly) unbiased
stochastic policy gradient estimators with trajectory-level entropy
regularization, with one being an unbiased visitation measure-
based estimator and the other one being a nearly unbiased yet
more practical trajectory-based estimator. We prove that although
the estimators themselves are unbounded in general due to the
additional logarithmic policy rewards introduced by the entropy
term, the variances are uniformly bounded. We then propose a
two-phase stochastic policy gradient (PG) algorithm that uses a
large batch size in the first phase to overcome the challenge of
the stochastic approximation due to the non-coercive landscape,
and uses a small batch size in the second phase by leveraging the
curvature information around the optimal policy. We establish a
global optimality convergence result and a sample complexity of
Õ( 1

ϵ2
) for the proposed algorithm. Our result is the first global

convergence and sample complexity results for the stochastic
entropy-regularized vanilla PG method.

Index Terms—Reinforcement learning, policy gradient, stochas-
tic approximation

I. INTRODUCTION

Entropy regularization is a popular technique to encourage
exploration and prevent premature convergence for reinforce-
ment learning (RL) algorithms. It was originally proposed in
[1] to improve the performance of REINFORCE, a classical
family of vanilla policy gradient (PG) methods widely used in
practice. Since then, the entropy regularization technique has
been applied to a large set of other RL algorithms, including
actor-critic [2, 3], Q-learning [4, 5] and trust-region policy
optimization methods [6]. It has been shown that the entropy
regularization works satisfactorily with deep learning approx-
imations for achieving an impressive empirical performance
boost, provides a substantial improvement in exploration and
robustness [3, 5, 7], and connects the policy gradient with
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Q-learning under a one-step entropy regularization [4] or a
trajectory-level KL regularization1 [8].

There has been considerable interest in the theoretical
understanding of how the entropy regularization exploits the
geometry of the optimization landscape. In particular, it has
been shown in [9, 10, 11] that entropy regularization makes
the regularized objective behave similar to a local quadratic
function and thus accelerates the convergence of entropy-
regularized PG algorithms. When the exact entropy-regularized
PG is available, a linear convergence rate has been established
for the entropy-regularized PG algorithms with the natural
PG (NPG) or policy mirror descent [10, 11] or without the
NPG [9]. However, in practice, the agent does not have access
to the exact entropy-regularized PG but only its stochastic
estimation from the samples of trajectories. The advantages
of entropy regularization have mostly been established for
the exact gradient setting. It is not fully understood whether
these advantages are only restricted to theoretical analysis
in the exact gradient settings and whether any geometric
property can be exploited to accelerate convergence to global
optimality in the stochastic gradient settings. Recently, it is
proven in [11] that the NPG with the entropy regularization
has a sample complexity of Õ( 1

ϵ2
) in the stochastic gradient

settings, where the inexactness of the gradient can be reduced to
the inexactness of the state-action value functions. However, the
literature on the global optimality convergence and the sample
complexity of the most fundamental PG, namely REINFORCE
and its variants with regularizations, is still limited, despite
its simplicity and popularity in practice. The work [9] has
recently developed the first set of global convergence results
for PG, which focuses on the soft-max policy parametrization
by assuming access to exact PG evaluations. However, their
result heavily relies on the access to the exact PG evaluations,
and it has been shown that the geometric advantages existing in
the exact gradient setting may not be preserved in the stochastic
setting [12, 13]. It remains an open problem whether a global
optimality convergence result and a low sample complexity
can be obtained for the PG with entropy regularization in the
stochastic gradient setting.

In this paper, we provide an affirmative answer to the
above question. In particular, we revisit the classical entropy
regularized (vanilla) policy gradient method proposed in the
seminal work [1] under the soft-max policy parametrization.

1Note that this is related to but different from the widely-used trajectory-
level entropy regularization later introduced in [5].
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We focus on the modern trajectory-level entropy regularization
proposed in [5], which is shown to improve over the original
one-step entropy regularization adopted in [1, 2] and [4]. Our
contributions are summarized below:
● We begin by proposing two new entropy regularized

stochastic PG estimators. The first one is an unbiased
visitation measure-based estimator, whereas the second
one is a nearly unbiased yet more practical trajectory-
based estimator. These (nearly) unbiased stochastic PG
estimators are the first likelihood-ratio-based estimators in
the literature with a trajectory-level entropy regularization.
We show that although the estimators themselves are un-
bounded in general due to the entropy-induced logarithmic
policy rewards, the variances indeed remain uniformly
bounded.

● One main challenge on extending the result in [9] to the
stochastic PG setting is the non-coercive landscape2 of
the entropy-regularized RL. To overcome this challenge,
we propose a two-phase stochastic PG algorithm that uses
a large batch size in the first phase and uses a small
batch size in the second phase. We establish a global
optimality convergence result and a sample complexity
of Õ( 1

ϵ2
) for the proposed algorithm under the softmax

parameterization. Our result is the first to achieve the
sample complexity of Õ( 1

ϵ2
) for the stochastic entropy-

regularized vanilla PG method and matches the sample
complexity of the natural PG [11] in terms of dependence
on ϵ.

A. Related work

It has been shown in [7] that the entropy-regularized RL
formulation provides a substantial improvement in exploration
and robustness. An actor-critic method is proposed in [3] which
updates the policy towards the exponential of the new Q-
function and projects the improved policy onto the desired set
of policies in the policy improvement step. Instead of using the
likelihood ratio gradient estimator [14], the gradient estimator
for their policy improvement is based on the re-parameterization
technique [3, Equation (13)] where the function approximation
is inevitable and the theoretical analysis is challenging. In
contrast, we focus on the stochastic PG method and classical
likelihood ratio estimators.

Stochastic PG estimators with the original one-step entropy
regularization have been proposed and adopted in [1, 2, 4].
For trajectory-level entropy regularization, an exact (visitation
measure-based) PG formula has been derived in [15] and later
re-derived in the soft-max policy parametrization setting in
[9], while stochastic PG estimators have not been formally
proposed or studied in the literature. [8] provides a stochastic
PG estimator for the value function with a related but
different regularization term: trajectory-level KL-divergence
regularization. However, KL-divergence regularization is far
more aggressive and less used in practice in reinforcement
learning compared with the entropy regularization [16]).

2A continuous function f(x) that is defined on Rn is called coercive if
lim
∥x∥→∞ f(x) = +∞.

The theoretical understanding of policy-based methods has
received considerable attention recently [9, 10, 11, 16, 17,
18, 19, 20, 21, 22]. Several techniques have been developed
to improve standard PG and achieve a linear convergence
rate, such as adding entropy regularization [9, 10, 11, 16],
exploiting natural geometries based on Bregman divergences
leading to NPG or policy mirror descent [10, 11, 17], and using
a geometry-aware normalized PG (GNPG) approach to exploit
the non-uniformity of the value function [23]. For the stochastic
policy optimization, the existing results have mostly focused
on policy mirror ascent methods with the goal of reducing the
stochastic analysis to the estimation of the Q-value function
[10, 11], as well as incorporating variance reduction techniques
to improve the sample complexity of the vanilla PG [24, 25].
The prior literature still lacks globally optimal convergence
results and sample complexity for stochastic (vanilla) PG with
the entropy regularization.

B. Notation

The set of real numbers is shown as R. u ∼ U means that u is
a random vector sampled from the distribution U . We use ∣X ∣
to denote the cardinality of a finite set X . The notations Eξ[⋅]

and E[⋅] refer to the expectation over the random variable ξ and
over all of the randomness. The notation Var[⋅] refers to the
variance. ∆(X ) denotes the probability simplex over a finite
set X . For vectors x, y ∈ Rd, let ∥x∥1, ∥x∥2 and ∥x∥∞ denote
the ℓ1-norm, ℓ2-norm and ℓ∞-norm. We use ⟨x, y⟩ to denote
the inner product. For a matrix A, the notation A ≽ 0 means
that A is positive semi-definite. Given a variable x, the notation
a = O(b(x)) means that a ≤ C ⋅ b(x) for some constant C > 0
that is independent of x. Similarly, a = Õ(b(x)) indicates
that the previous inequality may also depend on the function
log(x), that is, a ≤ C ⋅ b(x) ⋅ log(x), where C > 0 is again
independent of x. We use Geom(x) to denote a geometric
distribution with the parameter x. Let the notation 1A denote
the indicator function of an event A ⊆ Ω, i.e., 1A(ω) = 1
if ω ∈ A and 1A(ω) = 0 otherwise. For a given stochastic
algorithm, let Ft denote the σ-field generated by the history of
the algorithm up to the iteration t, just before the randomness
at the iteration t is generated. We define Et ∶= E[⋅∣Ft] as the
expectation operator conditioned on the σ-field Ft.

II. PRELIMINARIES

Markov decision processes. RL is generally modeled as
a discounted Markov decision process (MDP) defined by a
tuple (S,A,P, r, γ). Here, S and A denote the finite state
and action spaces; P(s′∣s, a) is the probability that the agent
transits from the state s to the state s′ under the action a ∈
A; r(s, a) is the reward function, i.e., the agent obtains the
reward r(sh, ah) after it takes the action ah at the state sh
at time h; γ ∈ (0,1) is the discount factor. Without loss of
generality, we assume that r(s, a) ∈ [0, r̄] for all s ∈ S and
a ∈ A. The policy π(a∣s) at the state s is usually represented
by a conditional probability distribution πθ(a∣s) associated
to the parameter θ ∈ Rd. Let τ∞ = {s0, a0, s1, a1, . . .} denote
the data of a sampled trajectory under policy πθ with the
probability distribution over the trajectory as p(τ∞ = ∣θ, ρ) ∶=
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ρ(s0)∏
∞
h=1 P(sh+1∣sh, ah)πθ(ah∣sh), where ρ ∈ ∆(S) is the

probability distribution of the initial state s0.
Value functions and Q-functions. Given a policy π, one

can define the state-action value function Qπ ∶ S ×A→ R as

Qπ
(s, a) ∶= Eah∼π(⋅∣sh)

sh+1∼P(⋅∣sh,ah)

[
∞

∑
h=0

γhr(sh, ah)∣s0 = s, a0 = a] .

The state-value function V π ∶ S → R and the advantage
function Aπ ∶ S × A → R can be defined as V π(s) ∶=
Ea∼π(⋅∣s)[Q

π(s, a)], Aπ(s, a) ∶= Qπ(s, a) − V π(s). The goal
is to find an optimal policy in the underlying policy class that
maximizes the expected discounted return under the initial state
distribution, namely, maxθ∈Rd V πθ(ρ) ∶= Es0∼ρ[V

πθ(s0)]. For
the notational convenience, we will denote V πθ(ρ) by the
shorthand notation V θ(ρ).

Exploratory initial distribution. The discounted state
visitation distribution dπs0 is defined as dπs0(s) ∶= (1 −
γ)∑

∞
h=0 γ

hP(sh = s∣s0, π), where P(sh = s∣s0, π) is the state
visitation probability that sh is equal to s under the policy
π starting from the state s0. The discounted state visitation
distribution under the initial distribution ρ is defined as
dπρ(s) ∶= Es0∼ρ[d

π
s0(s)]. Furthermore, the state-action visitation

distribution induced by π and the initial state distribution ρ is
defined as vπρ (s, a) ∶= d

π
ρ(s)π(a∣s), which can also be written

as vπρ (s, a) ∶= (1 − γ)Es0∼ρ∑
∞
h=0 γ

hP(sh = s, ah = a∣s0, π),
where P(sh = s, ah = a∣s0, π) is the state-action visitation
probability that sh = s and ah = a under π starting from
the state s0. To facilitate the presentation of the main results
of the paper, we assume that the state distribution ρ for the
performance measure is exploratory [9, 19], i.e., ρ(⋅) adequately
covers the entire state distribution:

Assumption 1: The state distribution ρ satisfies ρ(s) > 0 for
all s ∈ S .

In practice, when the above assumption is not satisfied,
we can optimize under another initial distribution µ, i.e., the
gradient is taken with respect to the optimization measure µ,
where µ is usually chosen as an exploratory initial distribution
that adequately covers the state distribution of some optimal
policy. It is shown in [16] that the difficulty of the exploration
problem faced by PG algorithms can be captured through the
distribution mismatch coefficient defined as ∥

dπ
ρ

µ
∥
∞

, where
dπ
ρ

µ

denotes component-wise division.
Soft-max policy parameterization. In this work, we

consider the soft-max parameterization – a widely adopted
scheme that naturally ensures that the policy lies in the
probability simplex. Specifically, for an unconstrained pa-
rameter θ ∈ R∣S∣∣A∣, πθ(a∣s) is chosen to be exp (θs,a)

∑a′∈A exp (θs,a′)
.

The soft-max parameterization is generally used for MDPs
with finite state and action spaces. It is complete in the
sense that every stochastic policy can be represented by this
class. For the soft-max parameterization, it can be shown
that the gradient and Hessian of the function logπθ(a∣s) are
bounded, i.e., for all θ ∈ R∣S∣∣A∣, s ∈ S and a ∈ A, we have:
∥∇ logπθ(a∣s)∥2 ≤ 2, ∥∇

2 logπθ(a∣s)∥2 ≤ 1.
RL with entropy regularization. Entropy is a commonly

used regularization in RL to promote exploration and discour-
age premature convergence to suboptimal policies [5, 8, 26].

It is far less aggressive in penalizing small probabilities, in
comparison to other common regularizations such as log barrier
functions [16]. In the entropy-regularized RL (also known
as maximum entropy RL), near-deterministic policies are
penalized, which is achieved by modifying the value function
to

V π
λ (ρ) = V

π
(ρ) + λH(ρ, π), (1)

where λ ≥ 0 determines the strength of the penalty and H(ρ, π)
stands for the discounted entropy defined as

H(ρ, π) ∶= Es0∼ρ,at∼π(⋅∣st)
st+1∼P(⋅∣st,at)

[
∞

∑
t=0

−γt logπ(at∣st)] .

Equivalently, V π
λ (ρ) can be viewed as the weighted value

function of π by adjusting the instantaneous reward to be
policy-dependent regularized version as rλ(s, a) ∶= r(s, a) −
λ logπ(a∣s), for all (s, a) ∈ S × A. We also define V π

λ (s)
analogously when the initial state is fixed at a given state s ∈ S .
The regularized Q-function Qπ

λ of a policy π, also known as
the soft Q-function, is related to V π

λ as (for every s ∈ S and
a ∈ A)

Qπ
λ(s, a) = r(s, a) + γEs′∼P (⋅∣s,a) [V

π
λ (s

′
)] ,

V π
λ (s) = Ea∼π(⋅∣s) [−λ logπ(a ∣ s) +Q

π
λ(s, a)] .

Bias due to entropy regularization. Due to the presence
of regularization, the optimal solution will be biased with the
bias disappearing as λ→ 0. More precisely, the optimal policy
π∗λ of the entropy-regularized problem could also be nearly
optimal in terms of the unregularized objective function, as
long as the regularization parameter λ is chosen to be small.
Denote by π∗ and π∗λ the policies that maximize the objective
function and the entropy-regularized objective function with
the regularization parameter λ, respectively. Let V ∗ and V ∗λ
represent the resulting optimal objective value function and
the optimal regularized objective value function. [11] shows
a simple but crucial connection between π∗ and π∗λ via the
following sandwich bound:

V π∗λ(ρ) ≤ V π∗
(ρ) ≤ V π∗λ(ρ) +

λ log ∣A∣

1 − γ
,

which holds for all initial distribution ρ.

III. STOCHASTIC PG METHODS FOR ENTROPY
REGULARIZED RL

A. Review: Exact PG methods

The PG method is one of the most popular approaches
for a direct policy search in RL [27]. The vanilla PG with
exact gradient information and the entropy regularization is
summarized in Algorithm 1.

Algorithm 1 Exact PG method
1: Inputs: {ηt}Tt=1, θ1.
2: for t = 1,2, . . . , T − 1 do
3: θt+1 = θt + ηt∇V

θt
λ (ρ).

4: end for
5: Outputs: θT .
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The uniform boundedness of the reward function r implies
that the absolute value of the entropy-regularized state-value
function and Q-value function are bounded.

Lemma 1 ([9]): V θ
λ (s) ≤

r̄+λ log ∣A∣
1−γ

and Qπ
λ(s, a) ≤

r̄+λ log ∣A∣
1−γ

for all (s, a) ∈ S ×A and θ ∈ R∣S∣∣A∣.
Under the soft-max policy parameterization, one can obtain

the following expression for the gradient of V π
λ (s) with respect

to the policy parameter θ:
Lemma 2 (Proposition 2 in [28]): The entropy regularized

PG with respect to θ is

∇V θ
λ (ρ) = (2)
1

1 − γ
Es,a∼v

πθ
ρ
[∇θ logπθ(a∣s) (Q

θ
λ(s, a) − λ logπθ(a ∣ s))] ,

where

∂ logπθ(a∣s)

∂θs′,a′
=

⎧⎪⎪
⎨
⎪⎪⎩

−πθ(a
′∣s′)πθ(a∣s), (s′, a′) ≠ (s, a),

πθ(a∣s) − πθ(a∣s)πθ(a∣s), (s
′, a′) = (s, a).

Furthermore, the entropy regularized PG is bounded, i.e.,
∥∇V θ

λ (ρ)∥ ≤ G for all ρ ∈ ∆(S) and θ ∈ R∣S∣∣A∣, where
G ∶= 2(r̄+λ log ∣A∣)

(1−γ)2
.

In addition, it is shown that the PG ∇V θ
λ (ρ) is Lipschitz

continuous.
Lemma 3 (Lemmas 7 and 14 in [9]): The PG ∇V θ

λ (ρ)
is Lipschitz continuous with some constant L > 0, i.e.,
∥∇V θ1

λ (ρ) −∇V
θ2
λ (ρ)∥ ≤ L ⋅ ∥θ1 − θ2∥, for all θ1, θ2 ∈ Rd,

where the value of the Lipschitz constant L is defined as
L ∶= 8r̄+λ(4+8 log ∣A∣)

(1−γ)3
.

Challenges for designing entropy regularized PG estima-
tors. Existing works either consider one-step entropy regular-
ization [2, 14], KL divergence [8], or the re-parametrization
technique [3, 5] (which introduces approximation errors that are
difficult to quantify exactly). In general, the regularized reward
r − λ logπθ is policy-dependent and unbounded even though
the original reward r is uniformly bounded. Hence, the existing
estimators for the un-regularized setting must be modified to
account for the policy-dependency and unboundedness while
maintaining the essential properties of (nearly) unbiasedness
and bounded variances. In the subsequent sections, we propose
two (nearly) unbiased estimators and show that although the
estimators may be unbounded due to unbounded regularized
rewards, the variances are indeed bounded. The proofs of
the results in this section can be found in Section A of the
supplemental materials.

B. Sampling the unbiased PG

It results from (2) that in order to obtain an unbiased sample
of ∇V θ

λ (ρ), we need to first draw a state-action pair (s, a)
from the distribution νπθ

ρ (⋅, ⋅) and then obtain an unbiased
estimate of the action-value function Qθ

λ(s, a). For the standard
discounted infinite-horizon RL setting with bounded reward
functions, [29] proposes an unbiased estimate of the PG
using the random horizon with a geometric distribution and
the Monte-Carlo rollouts of finite horizons. However, their
result cannot be immediately applied to the entropy-regularized
RL setting since the entropy-regularized instantaneous reward

r(s, a) − λ logπ(a∣s) could be unbounded when π(a∣s) → 0.
Fortunately, we can still show that an unbiased PG estimator
with the bounded variance for the entropy regularized RL
can be obtained in a similar fashion as in [29]. In partic-
ular, we will use a random horizon that follows a certain
geometric distribution in the sampling process. To ensure that
(sH , aH) ∼ ν

πθ
ρ (s, a), we will use the last sample (sH , aH)

of a finite sample trajectory (s0, a0, s1, a1, . . . , sH , aH) to
be the sample at which Qθ

λ(⋅, ⋅) is evaluated, where the
horizon H ∼ Geom(1−γ). Moreover, given (sH , aH), we will
perform Monte-Carlo rollouts for another trajectory with the
horizon H ′ ∼ Geom (1 − γ1/2) independent of H , and estimate
the advantage function value Qθ

λ(s, a) along the trajectory
(s′0, a

′
0, . . . , s

′
H′) with s′0 = s, a

′
0 = a as follows:

Q̂θ
λ(s, a) =r (s

′
0, a

′
0) +

H′

∑
t=1

γt/2
⋅ (r (s′t, a

′
t) − λ logπθ(a

′
∣s′)) .

(3)

The subroutines of sampling one pair (s, a) from νπθ
ρ (⋅, ⋅),

estimating Q̂θ
λ(s, a), and estimating V̂ θ

λ (s) are summarized as
Sam-SA and Est-EntQ in Algorithms 2 and 3, respectively.

Algorithm 2 Sam-SA: Sample for s, a ∼ νπθ
ρ (⋅, ⋅)

1: Inputs: ρ, θ, γ.
2: Draw H ∼ Geom(1 − γ).
3: Draw s0 ∼ ρ and a0 ∼ πθ(⋅∣s0)
4: for h = 1,2, . . . ,H − 1 do
5: Simulate the next state sh+1 ∼ P(⋅∣sh, ah) and action

ah+1 ∼ πθt(⋅∣sh+1).
6: end for
7: Outputs: sH , aH .

Algorithm 3 Est-EntQ: Unbiasedly estimating entropy-
regularized Q function

1: Inputs: s, a, γ, λ and θ.
2: Initialize s0 ← s, a0 ← a, Q̂← r(s0, a0).
3: Draw H ′ ∼ Geom(1 − γ1/2).
4: for h = 0,1, . . . ,H ′ − 1 do
5: Simulate the next state sh+1 ∼ P(⋅∣sh, ah) and action

ah+1 ∼ πθ(⋅∣sh+1).
6: Collect the instantaneous reward r (sh+1, ah+1) −

λ logπθ(ah+1∣sh+1) and add to the value Q̂: Q̂ ←

Q̂ + γ(h+1)/2 (r (sh+1, ah+1) − λ logπθ(ah+1∣sh+1)),
7: end for
8: Outputs: Q̂.

Motivated by the form of PG in (2), we propose the following
stochastic estimator:

∇̂V θ
λ (ρ) = (4)
1

1 − γ
∇θ logπθ(aH ∣sH) (Q̂

θ
λ(sH , aH) − λ logπθ(aH ∣ sH)) ,

where sH , aH ← Sam-SA(ρ, θ, γ) and Q̂θ
λ is defined in (3).

The following lemma shows that the stochastic PG (4) is an
unbiased estimator of ∇V θ

λ (ρ).
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Lemma 4: For ∇̂V θ
λ (ρ) defined in (4), we have E[∇̂V θ

λ (ρ)] =
∇V θ

λ (ρ).
The next lemma shows that the proposed PG estimator

∇̂V θ
λ (ρ) has a bounded variance even if it is unbounded when

πθ approaches a deterministic policy.
Lemma 5: For ∇̂V θ

λ (ρ) defined in (4), we have
Var[∇̂V θ

λ (ρ)] ≤ σ2, where σ2 = 8
(1−γ)2

(
r̄2+(λ log ∣A∣)2

(1−γ1/2)2 ) and
r̄ is the upper bound of the reward.

C. Sampling the trajectory-based PG

Compared to the unbiased PG with a random horizon in (4),
a more practical PG estimator is the trajectory-based PG. To
derive the trajectory-based PG for the entropy-regularized RL,
we first notice that the gradient ∇V θ

λ (ρ) can also be written as

∇V θ
λ (ρ) =

E [(
∞

∑
t=0

∇ logπθ(at∣st))(
∞

∑
t=0

γt
(r(st, at) − λ logπθ(at∣st)))] ,

where the expectation is taken over the trajectory distribution,
i.e., τ∞ =∼ p(τ∞ = ∣θ).

Since the distribution p(τ∞ = ∣θ) is unknown, ∇V θ
λ (ρ) needs

to be estimated from samples. The trajectory-based estimators
include REINFORCE [14], PGT [30] and GPOMDP [31]. In
practice, the truncated versions of these trajectory-based PG
estimators are used to approximate the infinite sum in the PG
estimator. Let τH = {s0, a0, s1, . . . , sH−1, aH−1, sH} denote
the truncation of the full trajectory τ∞ = of length H . Then,
with the commonly used truncated GPOMDP, the truncated
PG estimator for ∇V θ

λ can be written as:

∇̂V θ,H
λ (ρ) = (5)

H−1

∑
h=0

⎛

⎝

h

∑
j=0

∇ logπθ(aj ∣sj)
⎞

⎠
γh
(r(sh, ah) − λ logπθ(ah∣sh)) .

Due to the horizon truncation, the PG estimator (5) may no
longer be unbiased, but its bias can be very small with a large
horizon H .

Lemma 6: For ∇̂V θ,H
λ (ρ) defined in (5), we have

∥E[∇̂V θ,H
λ (ρ)] −∇V θ

λ (ρ)∥
2
≤
2(r̄ + λ log ∣A∣)γH

(1 − γ)
(H +

1

1 − γ
) .

From Lemma 6, we can observe that the bias is proportional
to γH and thus can be controlled to be arbitrarily small with
a constant horizon up to some logarithmic term. We then
show that the truncated PG estimator ∇̂V θ,H has a bounded
variance even if it may be unbounded when πθ approaches a
deterministic policy.

Lemma 7: For ∇̂V θ,H
λ (ρ) defined in (5), we have

Var(∇̂V θ,H
λ (ρ)) ≤

12r̄2 + 24λ2(log ∣A∣)2

(1 − γ)4
.

D. Batched PG algorithms

In practice, we can sample and compute a batch of indepen-
dently and identically distributed PG estimators {∇̂V θ,i

λ (ρ)}
B
i=1

where B is the batch size, in order to reduce the estima-
tion variance. To maximize the entropy-regularized objective

function (1), we can then update the policy parameter θ
by iteratively running gradient-ascent-based algorithms, i.e.,
θt+1 = θt+

ηt

B ∑
B
i=1 ∇̂V

θ,i
λ (ρ), where ηt > 0 is the step size. The

details of the unbiased PG algorithm with a random horizon
for the entropy-regularized RL are provided in Algorithm 4.

Algorithm 4 Ent-RPG: Random-horizon PG for Entropy-
regularized RL

1: Inputs: ρ, λ, θ1,B, T,{ηt}
T
t=1.

2: for t = 1,2, . . . , T do
3: for i = 1,2, . . . ,B do
4: siHt

, aiHt
← SamSA(ρ, θt, γ).

5: Q̂θt,i
λ ← Est-EntQ(siHt

, aiHt
, θt, γ, λ).

6: end for
7: θt+1 ← θt +

ηt

(1−γ)B ∑
B
i=1 [∇θ logπθt(a

i
Ht
∣siHt
)

(Q̂θt,i
λ − λ logπθt(s

i
Ht
∣ aiHt

))]

8: end for
9: Outputs: θT .

Remark 1: For the simplicity of the presentation, we focus
on deriving the stochastic PG estimator for the soft-max policy
parameterization. However, our results in this section (and also
the stationary point convergence result in Section IV-C below)
can be easily extended to the general parameterization πθ as
long as ∥∇ logπθ(a∣s)∥2 and ∥∇2 logπθ(a∣s)∥2 are bounded
for all (s, a) ∈ S ×A.

Due to space restrictions and in order to facilitate the
presentation of the main ideas, we will mainly focus on the
analysis of the unbiased PG estimator in (4) for the rest of the
paper. Similar results hold for the trajectory-based PG estimator
in (5) since its bias is exponentially small with respect to the
horizon (see Lemma 6). The proofs of the results of this section
can be found in Appendix A. We leave the formal discussion
of these results as future work.

IV. NON-COERCIVE LANDSCAPE

In this section, we first review some key results for the
entropy-regularized RL with the exact PG and highlight the
difficulty of generalizing these results to the stochastic PG
setting, due to the non-coercive landscape.

A. Review: Linear convergence with exact PG

A key result from [9] shows that, under the soft-max
parameterization, the entropy-regularized value function V θ

λ (ρ)
in (1) satisfies a non-uniform Łojasiewicz inequality as follows:

Lemma 8 (Lemma 15 in [9]): It holds that

∥∇V θ
λ (ρ)∥

2

2
≥ C(θ)(V θ∗

λ (ρ) − V
θ
λ (ρ)),

where

C(θ) =
2λ

∣S ∣
min
s

ρ(s)min
s,a

πθ(a∣s)
2

XXXXXXXXXXXX

d
π∗λ
ρ

ρ

XXXXXXXXXXXX

−1

∞

.

Furthermore, it is shown in [9] that the action probabilities
under the soft-max parameterization are uniformly bounded
away from zero if the exact PG is available.
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Lemma 9 (Lemma 16 in [9]): Using the exact PG (Algorithm
1) with ηt= η ≤

2
L

for the entropy regularized objective, it holds
that inft≥1mins,a πθt(a∣s) > 0.

Remark 2: Note that by Algorithm 1, inft≥1mins,a πθt(a∣s)
is only dependent on the initialization θ1 and step-size η (apart
from problem dependent constants). Hence hereafter we denote
cθ1,η = inft≥1mins,a πθt(a∣s).

With Lemmas 3, 8 and 9, it is shown in Theorem 6 of [9] that
the convergence rate for the entropy regularized PG is O (e−Ct),
where the value of C depends on inft≥1mins,a πθt(a∣s) > 0 and
{θt}

∞
t=1 is generated by Algorithm 1. With a bad initialization

θ1, mins,a πθ1(a∣s) could be very small and result in a slow
convergence rate. When studying the stochastic PG, this issue
of bad initialization will create more severe challenges on the
convergence, which we will discuss in the following sections.

One main challenge is the boundedness of iterations under
the stochastic PG. The iterates of stochastic gradient methods
may indeed escape to infinity in general, rendering the entire
scheme of stochastic approximation useless [32, 33]. In
particular, when using the stochastic truncated PG for the
entropy regularized RL, the key result of Lemma 9 may no
longer hold true. This in turn results in the loss of gradient
domination condition in guaranteeing the global convergence.

B. Landscape of a simple bandit example

To have a better understanding of the landscape of the
entropy-regularized value function, we visualize its landscape
in this section. For the simplicity of the visualization, we use a
simple bandit example (corresponding to γ = 0) with 2 actions,
2 parameters (θ1, θ2), the reward vector r = [2,1] and the
regularization parameter λ = 1. Then, the entropy-regularized
value function can be written as π⊺θ (r − logπθ).

Fig. 1. Landscape of π⊺
θ
(r − logπθ).

As shown in Figure 1, the entropy-regularized value function
is not coercive. When θ1 goes to positive (negative) infinity
and θ2 goes to negative (positive) infinity, the landscape will
become highly flat. It can also be seen that there is a line space
for (θ1, θ2) at which the entropy-regularized value function is
maximum.

When the stochastic PG is used, the search direction may
be dominated by the gradient estimation noise at the region
where the landscape is highly flat. This may further lead to the

failure of the globally optimal convergence for the stochastic
PG algorithm if the initial point is at the flat region.

C. Convergence to the first-order stationary point

Before presenting our main result, we first show that
the stochastic PG proposed in Algorithm 4 asymptotically
converges to a region where the PG vanishes almost surely if
a specific adaptive step-size sequence is used.

Lemma 10: Suppose that the sequence {θt}∞t=1 is generated
by Algorithm 4 for the entropy regularized objective with the
step-sizes satisfying ∑∞t=1 ηt = ∞,∑

∞
t=1 η

2
t < ∞ and ηt ≤

2
L

for all t = 1,2, . . .. It holds that limt→∞ ∥∇V
θt
λ (ρ)∥2 = 0 with

probability 1.
This result follows from classic results for the Robbins-

Monro algorithm [34, 35, 36] when an unbiased PG estimator
with the bounded variance, as in Algorithm 4, is used in the
update rule. No requirement on the batch size B is needed in
Lemma 10. We now provide the proof of Lemma 10 below.
Proof.

To prove Lemma 10, it suffices to check the conditions in
Proposition 3 of [34] for the objective function V θ

λ (ρ) and the
update rule θt+1 = θt + ηt(ut +wt), where ut = ∇V

θt
λ (ρ) and

wt = ∇̂V
θt
λ (ρ) −∇V

θt
λ (ρ).

1) From Lemma 3, we know that Condition 1 in Proposition
3 of [34] is satisfied with L = 8r̄+λ(4+8 log ∣A∣)

(1−γ)3
.

2) Condition 1 in Proposition 3 of [34] is satisfied by the
definition of θt and ∇V θ

λ (ρ).
3) Condition 1 in Proposition 3 of [34] is satisfied with c1 = 1

and c2 = 1.
4) From Lemma 4 and 5, we know that Condition

4 in Proposition 3 of [34] is satisfied with A =
8

(1−γ)2
(
r̄2+(λ log ∣A∣)2

(1−γ1/2)2 ).
5) Condition 1 in Proposition 3 of [34] is satisfied by the

definition of ηt.
In addition, it results from Lemma 1 that the entropy-

regularized value function V θ
λ (ρ) is bounded. Thus, by Propo-

sition 3 of [34], we must have limt→∞∇V
θt
λ (ρ) = 0 with

probability 1. This completes the proof.
◻

However, since the entropy-regularized value function V θ
λ (ρ)

is not coercive in θ and it may be the case that the gradient
∇V θt

λ (ρ) diminishing to 0 corresponds to θt going to infinity
instead of converging to a stationary point. In addition, the
existing results [32, 35, 36] on the almost surely stationary
point convergence rely on the assumption that the trajectories
of the process are bounded, i.e., supt≥0 ∥θt∥ <∞, almost surely.
This assumption is proven to hold when the function is coercive
[37]. However, when the function is not coercive, as in our
problem, it is very challenging to characterize the trade-off
between the gradient information and the estimation error
without additional assumptions.

V. MAIN RESULT

To overcome the non-coercive landscape challenge, we
propose a two-phase stochastic PG algorithm (Algorithm 5).



7

In the first phase, we will use a large batch size to control
the estimation error to guarantee that the stochastic PG is
informative even in the regime where the landscape is almost
flat. After a certain number of iterations, which is a constant
with respect to the optimality gap ϵ, the iteration will reach a
region where the landscape has enough curvature information.
Then, in the second phase, a small batch size is enough to
guarantee a fast convergence to the optimal policy.

Before presenting the main result, we first introduce some
helpful definitions. Let D(θt) = V θ∗

λ (ρ) − V
θt
λ (ρ) denote the

sub-optimality gap. Since the optimal policy of (1) is unique
[11], there must exist a continuum of optimal solutions

Θ∗ ∶= {θ∗ ∈ R∣S∣∣A∣ ∶
exp(θ∗s,a)

∑a′ exp(θ
∗
s,a′)

= π∗λ(a ∣ s),∀s ∈ S, a ∈ A}.

In addition, we use πθ⋆ and π⋆λ interchangeably to denote the
optimal policy of the entropy-regularized RL. Let {θ̄t}Tt=1 de-
note the iterates of the algorithm with the exact PG (Algorithm
1) with ηt= η ≤

1
2L

starting from the initial point θ1. For the
soft-max parameterization, we have θs,a = logπθ(a ∣ s) +Cs

for all (s, a) ∈ S×A, where {Cs}
∣S∣

s=1 are some constants. Then,
we have

min
θ∗∈Θ∗

∥θ̄t − θ
∗∥

2
= ∥logπθ̄t − logπ

∗
λ∥2

, for all t = {1,2, . . .}.

Furthermore, by Lemma 9, we can define ∆̄ ∶= ∥ log cθ̄1,η −
logπ⋆λ∥2, where cθ̄1,η > 0 is defined in Remark 2. Note that ∆̄
is only dependent on θ̄1 and η (apart from problem dependent
constants), and ∥logπθ̄t − logπ

∗
λ∥2
≤ ∆̄ for any θ̄1 and η ≤ 1

2L
.

In addition, with a fair degree of hindsight and for some δ > 0,
we define the stopping time for the iterates {θt}Tt=1 as

τ ∶=min{t∣ min
θ∗∈Θ∗

∥θt − θ
∗
∥2 > (1 +

1

δ
) ∆̄} , (6)

which is the index of the first iterate that exits the bounded
region

G
0
δ ∶= {θ ∈ R∣S∣∣A∣ ∶ min

θ∗∈Θ∗
∥θ − θ∗∥2 ≤ (1 +

1

δ
) ∆̄} .

Finally, we define d(θt) = minθ∗∈Θ∗ ∥θt − θ
∗∥2. We are now

ready to present the main result.
Theorem 1: Consider an arbitrary tolerance level δ > 0 and

a small enough tolerance level ϵ > 0. For every initial point θ1,
if θT+1 is generated by Algorithm 5 with

T1 ≥ (
6D(θ1)

δϵ0
)

8L

C0
δ

ln2

, T2 ≥
t0ϵ0
6δϵ
− t0, T = T1 + T2,

B1 ≥max{
30σ2

C0
δ ϵ0δ

,
6σT1 logT1

∆̄L
} , B2 ≥

σ2 ln(T2 + t0)

6Cαδϵ
,

ηt = η ≤min{
logT1

T1L
,
8

C0
δ

} for t ≤ T1,

ηt =
1

t − T1 + t0
for t > T1

where

ϵ0 =min

⎧⎪⎪
⎨
⎪⎪⎩

(
λmins ρ(s)

6 ln 2
)

2

(α exp(
−r̄

(1 − γ)λ
))

4

,1

⎫⎪⎪
⎬
⎪⎪⎭

, (7)

t0 ≥

√
3σ2

2δϵ0
, (8)

Cα ∶=
2λ

∣S ∣
min
s

ρ(s)(1 − α)2min
s,a

πθ∗(a∣s)
2

XXXXXXXXXXXX

d
π∗λ
ρ

ρ

XXXXXXXXXXXX

−1

∞

> 0, (9)

C0
δ =

2λ

∣S ∣

XXXXXXXXXXXX

d
π∗λ
ρ

ρ

XXXXXXXXXXXX

−1

∞

min
s

ρ(s)min
θ∈G0

δ

min
s,a

πθ(a∣s)
2, (10)

and σ is defined in Lemma 5, then we have P(D(θT+1) ≤
ϵ) ≥ 1 − δ. In total, it requires Õ (ϵ−2) samples to obtain an
ϵ-optimal policy with high probability.

Algorithm 5 Two-phase stochastic PG for entropy regularized
RL

1: Inputs: ρ, λ, θ1,B1,B2, T1, T,{ηt}
T
t=1.

2: for t = 1,2, . . . , T do
3: if t ≤ T1 then
4: B = B1

5: else
6: B = B2

7: end if
8: Run lines 3-7 in Algorithm 4
9: end for

10: Outputs: θT ;

A. Discussion

In Theorem 1, we have derived strong last-iterate complexity
bounds (in contrast to the predominant running-min and ergodic
complexity bounds in the reinforcement learning literature),
with the desirable Õ(1/ϵ2) dependency on the targeting
tolerance ϵ. That being said, the polynomial dependency on 1/δ
and exponential dependencies on other problem- and algorithm-
dependent constants also indicate that our bounds may not be
tight in general.

The convergence analysis of the stochastic softmax PG with
the entropy regularization is challenging 3 due to the weaker
regularization effect of the entropy regularization (compared
to the log-barrier regularization adopted in previous works
on global optimality convergence of policy gradient methods
[16, 38]), as well as the “softmax gravity well” induced by
the softmax parameterization which has also been observed
in the exact gradient setting [9, 39]. In particular, it only
entails uniform gradient domination properties for policies
that are bounded below uniformly (cf. Lemma 8). We thus
need to control the trajectory to ensure that πθt remains
in the region where it is uniformly bounded from below
for all t. However, even with large batches, it is generally

3Note that similar difficulties in generalization from exact policy gradients
to stochastic policy gradients have been observed in [13], which states that
“unlike the exact gradient setting, geometric information cannot be easily
exploited in the stochastic case for accelerating policy optimization without
detrimental consequences or impractical assumptions”.
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difficult to control stochastic trajectories, which eventually
leads to the polynomial dependency on 1/δ and the exponential
dependencies on some constants. If large batches are not used,
then the trajectories would be even harder to control and
no guarantees may be attained unless additional structural
assumptions are enforced on the underlying MDP. In addition,
because of the different batch sizes and analysis techniques
used in two phases, the conditions for the step-size ηt are also
specific for the corresponding phase.

In the next three sections, we provide the proof of Theorem
1. We begin by showing that the iterates will converge to a
neighborhood of the optimal solution with high probability in
Section VII, and then utilize the curvature information around
the optimal policy to guarantee that the action probabilities will
still remain uniformly bounded with high probability in Section
VIII. We then combine the two steps to prove Theorem 1 in
Section IX. For a roadmap of the main ideas behind the proof
and the utilization of different lemmas in the paper, please
refer to Figure 2.

Fig. 2. Roadmap of the main ideas behind the proof of Theorem 1 and their
connection to various lemmas in the paper.

VI. EXPERIMENT

We compare our proposed PG estimator with the estimator
given in [8] for PG regularized by KL-divergence between the
current policy and the reference policy.

The two state-value estimators are evaluated in a cartpole
environment of the Mujoco package. Experiments are per-
formed to compare the performance of the estimators for two
different batch sizes B ∈ {8,16} when λ = 0.1 (see Fig. 3). For
each batch size, experiments are repeated with five different
seeds. For each subfigure, the solid lines are the means of
the experiments among five different seeds, and the shaded
area is a confidence interval within one standard deviation.

Fig. 3. Rewards comparison among two different value estimators.

The red line is our proposed method, and the blue line is the
KL-divergence-based estimator given in [8]. Fig. 3 shows that
our proposed estimator converges to the rewards faster than
the estimator of [8], which supports the results of this paper
that the proposed state value estimator can better evaluate the
policy than the KL-divergence-based estimator.

VII. GLOBAL CONVERGENCE WITH ARBITRARY
INITIALIZATION

In this section, we provide the first step towards the proof of
Theorem 1. In particular, we will prove that after the first phase
of Algorithm 5, the iterates will converge to a neighborhood
of the optimal solution with high probability due to the use of
a large batch size.

With a large batch size, we can show that if the iterations with
the exact PG are bounded, then the iterations with the unbiased
stochastic PG will remain bounded with high probability.
This will further imply that the unbiased stochastic PG will
converge to the neighborhood of the globally optimal policy
with high probability. This is a non-trivial result involving the
stopping/hitting time analysis, as presented below.

Lemma 11: Consider arbitrary tolerance levels δ > 0 and ϵ0 >
0. For every initial point θ1, if θT is generated by Algorithm

4 with ηt = η ≤ min{ logT1

T1L
, 8
C0

δ

}, T1 = (
6D(θ1)

δϵ0
)

8L

C0
δ

ln2 , and

B1 =max{ 30σ2

C0
δ
ϵ0δ

, 6σ
∆̄L
⋅ T1 ⋅ logT1}, then we have P(D(θT1) ≤

ϵ0) ≥ 1 − δ/2.

A. Helpful lemmas

To prove Lemma 11, we consider the case when τ > T1 and
the case when τ ≤ T1 separately, where τ is defined in (6).
When τ > T1, we can use Lemma 8 to show that D(θt) is
linearly convergent up to some aggregated estimation error.

Lemma 12: If ηt= η ≤ min{ 1
2L

, 8
C0

δ

}, then

E[D(θT1)1τ>T1] ≤ (1 −
ηC0

δ

8
)
T1−1

D(θ1) +
5σ2

8C0
δ
B1

.

Proof. Let et = ∇V θt
λ (ρ) − ut, where ut =

1
B1
∑

B1

i=1 ∇̂V
θt,i
λ (ρ)

and ∇̂V θt,i
λ (ρ) is an unbiased estimator of ∇V θt

λ (ρ). Since
∇V θ

λ (ρ) is L-smooth due to Lemma 3, it follows from Lemma
19 in the supplementary material:

Et
[D(θt+1) −D(θt)]1τ>t

=Et [V θt
λ (ρ) − V

θt+1
λ (ρ)]1τ>t

≤Et
[−

η

8
∥ut∥

2
2 +

3η

4
∥et∥

2
2]1τ>t

≤Et
[−

η

8
∥ut −∇V

θt
λ (ρ) +∇V

θt
λ (ρ)∥

2

2
+
3η

4
∥et∥

2
2]1τ>t

=Et
[−

η

8
∥∇V θt

λ (ρ)∥
2

2
+
5η

8
∥et∥

2
2]1τ>t

≤Et
[−

ηC(θt)

8
D(θt) +

5η

8
∥et∥

2
2]1τ>t,

for every η ≤ 1
2L

, where the second inequality uses the fact that
ut is an unbiased estimator of ∇V θt

λ (ρ) and the last inequality
is due to Lemma 8. We now consider two cases:
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● Case 1: Assume that τ > t, which implies that θt ∈ G0δ
and C(θt) ≥ C0

δ . Then, we have E[D(θt+1)∣Ft] ≤

(1 −
ηC0

δ

8
)D(θt) +

5η
8

E [∥et∥
2
2 ∣Ft] .

● Case 2: Assume that τ ≤ t which leads to
E[D(θt+1)∣Ft]1τ>t = 0.

Now combining the above two cases yields the inequality

E[D(θt+1)∣Ft]1τ>t

≤{(1 −
ηC0

δ

8
)D(θt) +

5η

8
E [∥et∥

2
2 ∣Ft]}1τ>t

≤(1 −
ηC0

δ

8
)D(θt)1τ>t +

5η

8
E [∥et∥

2
2 ∣Ft] .

In addition, conditioning on Ft yields that

E[D(θt+1)1τ>t+1∣Ft] ≤ E[D(θt+1)1τ>t∣Ft]

= E[D(θt+1)∣Ft]1τ>t,

where the last equality uses the fact that τ is a stopping time
and the random variable 1τ>t is determined completely by the
sigma-field Ft. Taking the expectations over the sigma-field
Ft and then arguing inductively gives rise to

E[D(θt+1)1τ>t+1]

≤
t

∏
i=0

(1 −
ηC0

δ

8
)D(θ1) +

t

∑
i=0

(1 −
ηC0

δ

8
)

i
5η

8
E [∥ei∥

2
2]

≤(1 −
ηC0

δ

8
)

t

D(θ1) +
5σ2

C0
δB1

.

By setting t + 1 = T1, we obtain that E[D(θT1)1τ>T1] ≤

(1 −
ηC0

δ

8
)
T1−1

D(θ1) +
5σ2

C0
δ
B1

. This completes the proof. ◻

We now establish that {θt}Tt=1 will be bounded with high
probability if the large batch size is used.

Lemma 13: It holds that P(τ ≤ T1) ≤
δ⋅η⋅T1⋅(1+ηL)

T1−1⋅σ
∆̄B1

.

Proof. By the triangle inequality and the fact that the iterations
of the algorithm with the exact PG are bounded by ∆̄, we have

d(θt) ≤ ∥θt − θ̄t∥2 + min
θ∗∈Θ∗

∥θ∗ − θ̄t∥2 ≤ ∥θt − θ̄t∥2 + ∆̄.

Using the update rule of the algorithm with the exact PG
∇V θ̄i

λ (ρ) and the stochastic PG ui =
1
B1
∑

B1

j=1 ∇̂V
θi,j
λ (ρ), one

can write

d(θi) =∥(θ1 +
t−1

∑
i=1

ηiui) − (θ1 +
t−1

∑
i=1

ηi∇V
θ̄i
λ (ρ))∥

2

+ ∆̄

≤
t−1

∑
i=1

ηi ∥ui −∇V
θ̄i
λ (ρ)∥2

+ ∆̄

=
t−1

∑
i=1

ηi ∥ui −∇V
θi
λ (ρ) +∇V

θi
λ (ρ) −∇V

θ̄i
λ (ρ)∥2

+ ∆̄

≤
t−1

∑
i=1

ηi ∥ei∥2 +
t−1

∑
i=1

ηiL ∥θi − θ̄i∥2 + ∆̄.

By expanding ∥θi − θ̄i∥2 recursively, it can be concluded that

d(θt)

≤
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L ∥θt−1 − θ̄t−1∥2 +
t−2

∑
i=1

ηiL ∥θi − θ̄i∥2 + ∆̄

≤
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L
t−2

∑
i=1

ηi ∥ei∥2 + ηt−1L
2
t−2

∑
i=1

ηi ∥θi − θ̄i∥2

+
t−2

∑
i=1

ηiL ∥θi − θ̄i∥2 + ∆̄

=
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L
t−2

∑
i=1

ηi ∥ei∥2

+
t−2

∑
i=1

(ηiL + ηt−1ηiL
2) ∥θi − θ̄i∥2 + ∆̄

≤
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L
t−2

∑
i=1

ηi ∥ei∥2 + ∆̄

+ (ηt−2L + ηt−1ηt−2L
2)

t−3

∑
i=1

ηi ∥ei∥2

+
t−3

∑
i=1

((ηt−2L + ηt−1ηt−2L
2)ηiL

+ (ηiL + ηt−1ηiL
2)) ∥θi − θ̄i∥2

≤∆̄ +
t−1

∑
i=1

ηi ∥ei∥2 + ηt−1L
t−2

∑
i=1

ηi ∥ei∥2

+ (ηt−2L + ηt−1ηt−2L
2)

t−3

∑
i=1

ηi ∥ei∥2

+
t−4

∑
i=1

((ηt−2L + ηt−1ηt−2L
2)ηt−3L

+ (ηt−3L + ηt−1ηt−3L
2)) ∥ei∥2

+
t−4

∑
i=1

((ηt−2ηt−3L
2
+ ηt−1ηt−2ηt−3L

3)ηiL

+ (ηt−3L + ηt−1ηt−3L
2)ηi) ∥θi − θ̄i∥2

=
t−1

∑
i=1

ηi
t−1

∏
j=i+1

(1 + ηjL) ∥ei∥2 + ∆̄.

Then, by the definition of τ in (6) and Markov inequality, we
obtain

P(τ ≤ T1) =P( max
t∈{1,...,T1}

d(θt) ≥ (1 +
1

δ
)∆̄)

≤P(
T1−1

∑
i=1

ηi
T1−1

∏
j=i+1

(1 + ηjL) ∥ei∥2 + ∆̄ ≥ (1 +
1

δ
)∆̄)

≤
∑

T1−1
i=1 ηi∏

T1−1
j=i+1(1 + ηjL)E[∥ei∥2]

1
δ
∆̄

≤
δη(1 + ηL)T1−1∑

T1−1
i=1 E[∥ei∥2]

∆̄
,

where we use the fact that ηt = η for all t ∈ {1,2, . . .}.

Furthermore, since E[∥ei∥2] ≤
√

E[∥ei∥
2
2] ≤

σ
B1

, we have

P(τ ≤ T1) ≤
δ⋅η⋅T1⋅(1+ηL)

T1−1⋅σ
∆̄B1

. This completes the proof. ◻
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B. Proof of Lemma 11

By combining Lemmas 12 and 13, we obtain that

P(D(θT1) ≥ ϵ0)

≤P(τ > T1,D(θT1) ≥ ϵ0) + P(τ ≤ T1,D(θT1) ≥ ϵ0)

≤
E[1τ>T1D(θT1)]

ϵ0
+ P(τ ≤ T1)

≤(1 −
ηC0

δ

8
)

T1−1
D(θ1)

ϵ0
+

5σ2

C0
δB1ϵ0

+
δ ⋅ η ⋅ T1 ⋅ (1 + ηL)

T1−1 ⋅ σ

∆̄B1

≤(1 −
ηC0

δ

8
)

8

ηC0
δ

ηC0
δ
T1

8 D(θ1)

ϵ0

+
5σ2

C0
δB1ϵ0

+
δ ⋅ η ⋅ T1 ⋅ (1 + ηL)

T1−1 ⋅ σ

∆̄B1

≤
1

2

ηC0
δ
T1

8 D(θ1)

ϵ0
+

5σ2

C0
δB1ϵ0

+
δ ⋅ η ⋅ T1 ⋅ (1 + ηL)

T1−1 ⋅ σ

∆̄B1
,

where the second inequality holds due to the Markov inequality,
and the last inequality holds because of (1 − 1

m
)m ≤ 1

2
for all

m ≥ 1 and 8
ηC0

δ

≥ 1. For any x ∈ R that satisfies x > 0, the
inequality (logx)/x − 1/2 < 0 also holds. Therefore, for any
T1 > 0, the inequality logT1

T1L
− 1

2L
< 0 always holds. By taking

η ≤min{ logT1

T1L
, 8
C0

δ

}, we obtain

P(D(θT1) ≥ ϵ0)

≤
1

2

C0
δ

logT1
8L D(θ1)

ϵ0
+

5σ2

C0
δB1ϵ0

+
δ ⋅ logT1 ⋅ (1 +

logT1

T1
)T1−1 ⋅ σ

∆̄B1L

≤
1

2

C0
δ

logT1
8L D(θ1)

ϵ0
+

5σ2

C0
δB1ϵ0

+
δ ⋅ logT1 ⋅ (1 +

logT1

T1
)

T1
logT1

⋅logT1 ⋅ σ

∆̄B1L

≤
1

2

C0
δ

logT1
8L D(θ1)

ϵ0
+

5σ2

C0
δB1ϵ0

+
δ ⋅ logT1 ⋅ T1 ⋅ σ

∆̄B1L

≤
1

T
ln2C0

δ
8L

1

D(θ1)

ϵ0
+

5σ2

C0
δB1ϵ0

+
δ ⋅ logT1 ⋅ T1 ⋅ σ

∆̄B1L
,

where we have used (1 + x)1/x ≤ e in the third inequality and
aln b = blna in the last inequality. To guarantee P(D(θT1) ≥

ϵ0) ≤ δ/2, it suffices to have

T1 = (
6D(θ1)

δϵ0
)

8L

C0
δ

ln2

,B1 =max{
30σ2

C0
δ ϵ0δ

,
6σ

∆̄L
⋅ T1 ⋅ logT1} .

This completes the proof.

VIII. UNIFORMLY BOUNDED ACTION PROBABILITIES GIVEN
A GOOD INITIALIZATION

In this section, we will show how to utilize the curvature
information around the optimal policy to guarantee that the
action probabilities will still remain uniformly bounded with

high probability, which serves as the second step towards the
proof of Theorem 1.

Lemma 14: Given a tolerance level δ > 0, let π∗λ be the
optimal policy of V θ

λ (ρ). Assume further that the random
variable {θt}T2

t=1 is generated from Algorithm 4 with a step-
size sequence of the form ηt = 1/(t + t0) and a batch-size
sequence B ≥ 1

ηt
for all t = 1,2, . . . , T2. If t0 ≥

√
3σ2

2δϵ0
, and

πθ1 is initialized in a neighborhood U1 such that

U1 = {π ∈∆(A)
∣S∣
∶D(π) ≤ ϵ0} , (11)

where ϵ0 =min{(λmins ρ(s)
6 ln2

)
2
(α exp( −r̄

(1−γ)λ
))

4
,1} and the

constant α ∈ (0,1), then the event 4

ΩT2

α,1 = {min
s,a

πθt(a∣s) ≥ (1 − α)min
s,a

π∗λ(a∣s),∀t = 1,2, . . . , T2 }

(12)

occurs with probability at least 1 − δ/6.

A. Helpful lemmas

To prove Lemma 14, we first characterize the maximum
amount by which D(θt) can grow at each step.

Lemma 15: Suppose that {θt} is generated by Algorithm 4
with 0 < ηt ≤

(1−γ)3

16r̄+λ(8+16 log ∣A∣)
for all t ≥ 1. We have

D(θt+1) ≤(1 −
ηtC(θt)

4
)D(θt) −

ηt
2
ξt +

ηt
4
∥et∥

2
2 , (13)

where ξt = ⟨et,∇V
θt
λ (ρ)⟩ and et = ∇̂V

θt
λ (ρ) −∇V

θt
λ (ρ).

Proof. Since ∇V θ
λ (ρ) is L-smooth in light of Lemma 3, it

follows from Lemma 19 that

D(θt+1) −D(θt)

≤ −
ηt
4
∥∇̂V θ

λ (ρ)∥
2

2
+
ηt
2
∥et∥

2
2

≤ −
ηt
4
∥∇̂V θt

λ (ρ) −∇V
θt
λ (ρ) +∇V

θt
λ (ρ)∥

2

2
+
ηt
2
∥et∥

2
2

= −
ηt
4
∥∇̂V θt

λ (ρ) −∇V
θt
λ (ρ)∥

2

2
−
ηt
4
∥∇̂V θt

λ (ρ)∥
2

2

−
ηt
2
⟨et,∇V

θt
λ (ρ)⟩ +

ηt
2
∥et∥

2
2

= −
ηt
4
∥∇V θt

λ (ρ)∥
2

2
−
ηt
2
⟨et,∇V

θt
λ (ρ)⟩ +

ηt
4
∥et∥

2
2

≤ −
ηtC(θt)

4
D(θt) −

ηt
2
⟨et,∇V

θt
λ (ρ)⟩ +

ηt
4
∥et∥

2
2 ,

for every ηt ≤
1
2L

, where the last inequality is due to Lemma
8. ◻

The quantity by which D(θt) can grow at each step can
be large for any given t but we will show that, with high
probability, the aggregation of these errors remains controllably
small under the stated conditions on the step-sizes and batch
size.

Similar as the techniques used in [23, 37, 41, 42, 43], we
now encode the error terms in (13) as Mn = ∑

n
t=1 ηtξt and

Sn = ∑
n
t=1

ηt

4
∥et∥

2
2 .

4The σ-field of this event is the Cartesian product of the natural Borel
σ-field on the underlying MDPs [40, Section 2.1.6].
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For given πθn , the parameter ξn is fully determined by a
trajectory obtained at iteration n, i.e., τn = {sn0 a

n
0 , ..., s

n
H}. For

a stationary environment, the trajectory τn is fully determined
by the policy at time n, namely πn, which is parameterized
by θn where θn is fully determined by the update rule by
algorithm 4 (Ent-RPG) . Note that the input of the update rule
is fully determined by the information up to the n − 1. Then,
θn is measurable with respect to Fn−1, which subsequently
concludes that {ξ1, ξ2, ..., ξn} are also measurable regarding
with Fn−1. Therefore En−1 [ξn] = 0 since

En−1
[ξn] =E [⟨∇̂V

θn

λ (ρ) −∇V
θn

λ (ρ), ∇V
θn

λ (ρ)⟩ ∣Fn−1]

=E [⟨∇V θn

λ (ρ),∇V
θn

λ (ρ)⟩ ∣Fn−1]

− E [∣∣∇V θn

λ (ρ)∣∣
2
∣Fn−1]

=0

holds. Then, we have En−1 [Mn] = Mn−1. Therefore, Mn

is a zero-mean martingale; likewise, En−1 [Sn] ≥ Sn−1, and
therefore, Sn is a submartingale. The difficulty of controlling
the errors in Mn and Sn lies in the fact that the estimation
error en may be unbounded. Because of this, we need to take
a less direct, step-by-step approach to bound the total error
increments conditioned on the event that D(θn) remains close
to D(θ∗). We begin by introducing the “cumulative mean
square error” Rn =M

2
n + Sn. By construction, we have

Rn = (Mn−1 + ηnξn)
2
+ Sn−1 +

1

4
ηn ∥en∥

2

= Rn−1 + 2Mn−1ηnξn + η
2
nξ

2
n +

1

4
ηn ∥en∥

2
.

Hence, En−1 [Rn] = Rn−1 + 2Mn−1ηn En−1 [ξn] + η
2
n En−1

[ξ2n] +
1
4
ηn En−1 [∥en∥

2
] ≥ Rn−1, i.e., Rn is a submartingale.

With a fair degree of hindsight, we define U as:

U = {π ∈∆(A)∣S∣ ∶D(π) ≤ 2ϵ0 +
√
ϵ0} . (14)

To condition it further, we also define the events

Ωn ≡ Ωn(ϵ0) = {πθt ∈ U for all t = 1,2, . . . , n}
En ≡ En(ϵ0) = {Rt ≤ ϵ0 for all t = 1,2, . . . , n}

By definition, we also have Ω0 = E0 = Ω (because the set-
building index set for k is empty in this case, and every
statement is true for the elements of the empty set). These
events will play a crucial role in the sequel as indicators of
whether πθt has escaped the vicinity of π⋆λ.

For brevity, we write Fn = σ(θ1, . . . , θn) for the natural
filtration of θn. Now, we are ready to state the next lemma.

Lemma 16: Let π∗λ be the optimal policy. Then, for all
n ∈ {1,2, . . .}, the following statements hold:

1) Ωn+1 ⊆ Ωn and En+1 ⊆ En.
2) En−1 ⊆ Ωn.
3) Consider the “large noise” event

Ẽn ≡ En−1/En = En−1 ∩ {Rn > ϵ0}

= {Rt ≤ ϵ0 for all t = 1,2, . . . , n − 1 and Rn > ϵ0}

and let R̃n = Rn1En−1 denote the cumulative error subject
to the noise being “small” until time n. Then,

E [R̃n] ≤ E [R̃n−1] +G
2σ2η2n +

ηnσ
2

4B
− ϵ0P (Ẽn−1) .

(15)

By convention, we write Ẽ0 = ∅ and R̃0 = 0.
Proof. Statement 1 is obviously true. For Statement 2, we
proceed inductively:
● For the base case n = 1, we have Ω1 = {πθ1 ∈ U} ⊇

{πθ1 ∈ U1} = Ω because πθ1 is initialized in U1 ⊆ U . Since
E0 = Ω, our claim follows.

● For the inductive step, assume that En−1 ⊆ Ωn for some
n ≥ 1. To show that En ⊆ Ωn+1, we fix a realization in En

such that Rt ≤ ε for all t = 1,2, . . . , n. Since En ⊆ En−1,
the inductive hypothesis posits that Ωn also occurs, i.e.,
πθt ∈ U for all t = 1,2, . . . , n; hence, it suffices to show
that πθn+1 ∈ U . To that end, given that πθt ∈ U for all
t = 1,2, . . . n, the distance estimate (13) readily gives
D(θt+1) ≤ D(θt) + ηtξt +

ηt

4
∥et∥

2
2 for all t = 1,2, . . . , n.

Therefore, after telescoping, we obtain

D(θn+1) ≤D(θ1) +Mn + Sn ≤D(θ1) +
√
Rn +Rn

≤ε +
√
ε + ε

=2ε +
√
ε

by the inductive hypothesis. This completes the induction.
For Statement 3, we decompose R̃n as

R̃n = Rn1En−1

= Rn−11En−1 + (Rn −Rn−1)1En−1

= Rn−11En−2 −Rn−11Ẽn−1 + (Rn −Rn−1)1En−1

= R̃n−1 + (Rn −Rn−1)1En−1 −Rn−11Ẽn−1

where we have used the fact that En−1 = En−2/Ẽn−1 so
1En−1 = 1En−2 − 1Ẽn−1 (recall that En−1 ⊆ En−2). Then, by
the definition of Rn, we have

Rn −Rn−1 = 2Mn−1ηnξn + η
2
nξ

2
n +

1

4
ηn ∥en∥

2

and therefore

E [(Rn −Rn−1)1En−1] = (16)

2ηnE [Mn−1ξn1En−1] + η
2
nE [ξ2n1En−1] +

1

4
ηnE [∥en∥

2 1En−1] .

However, since En−1 and Mn−1 are both Fn-measurable,
we have the following estimates:
● For the term in (16), by the unbiasedness of the gradient es-

timator shown in Lemma 4, we have: E [Mn−1ξn1En−1] =

E [Mn−11En−1E [ξn ∣ Fn]] = 0.
● The second term in (16) is where the conditioning on
En−1 plays the most important role. It holds that:

E [ξ2n1En−1] = E [1En−1E [⟨en,∇V
θn
λ (ρ)⟩

2
∣ Fn]]

≤ E [1En−1 ∥∇V
θn
λ (ρ)∥

2
E [∥en∥

2
∣ Fn]]

≤ E [1Ωn
∥∇V θn

λ (ρ)∥
2

E [∥en∥
2
∣ Fn]]

≤ G2σ2
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where the first inequality is due to the Cauchy-Schwarz
inequality, the second inequality follows from En−1 ⊆ Ωn

and the last inequality results from Lemmas 2 and 5.
● Finally, for the third term in (16), we have:

ηn
4

E [∥en∥
2
2 1En−1] ≤

ηnσ
2

4B
. (17)

Thus, putting together all of the above, we obtain
E [(Rn −Rn−1)1En−1] ≤ G2σ2η2n +

ηnσ
2

4B
. Since Rn−1 > ε

if Ẽn−1 occurs, we obtain E [Rn−11Ẽn−1] ≥ εE [1Ẽn−1] =

εP (Ẽn−1) . This completes the proof of Statement 3. ◻

With the above results, we can show that the cumulative
mean square error Rn is small with high probability at all
times.

Lemma 17: Consider an arbitrary tolerance level δ > 0.
If Algorithm 4 is run with a step-size schedule of the form
ηt = 1/(t + t0) where t0 ≥

√
3σ2

2δϵ0
and a batch size schedule

Bt ≥
1
ηt

, we have P (En) ≥ 1 − δ/6, for all n = 1,2, . . .
Proof. We begin by bounding the probability of the “large
noise” event Ẽn = En−1/En as follows:

P (Ẽn) = P (En−1/En) = P (En−1 ∩ {Rn > ε})

= E [1En−1 × 1{Rn>ε}]

≤ E [1En−1 × (Rn/ε)] = E [R̃n] /ε,

which is derived by using the fact that Rn ≥ 0 (so
1{Rn>ε} ≤ Rn/ε). Now, by summing up (15), we conclude
that E [R̃n] ≤ E [R̃0] +

σ2

4B ∑
n
t=1 ηt − ε∑

n
t=1 P (Ẽt−1) . Hence,

combining the above results, we obtain the estimate

n

∑
t=1

P (Ẽk) ≤
σ2

4Bϵ0

n

∑
t=1

ηt ≤
σ2

4ϵ0

n

∑
t=1

η2t ≤
σ2Γ

4ϵ0
,

where Γ = ∑
∞
t=1 η

2
t = ∑

∞
t=1(t + t0)

−2, and we have used
the relations that R̃0 = 0 and Ẽ0 = ∅ (by convention). By
choosing t0 ≥

√
3σ2

2δϵ0
, we ensure that σ2Γ

4ϵ0
< δ/6; moreover,

since the events Ẽt are disjoint for all t = 1,2, . . ., we
obtain P (⋃n

t=1 Ẽt) = ∑
n
t=1 P (Ẽt) ≤ δ/6. Hence, P (En) =

P (⋂n
t=1 Ẽ

c
t ) ≥ 1 − δ/6 as claimed. ◻

Furthermore, we can show that the entropy-regularized value
function V θ

λ (ρ) is locally quadratic around the optimal policy
πθ∗ .

Lemma 18: For every policy πθ, we have

D(θ) ≥
λmins ρ(s)

2 ln 2
∣πθ(a ∣ s) − πθ∗(a ∣ s)∣

2
, ∀s ∈ S, a ∈ A.

Proof. It follows from the soft sub-optimality difference lemma

(Lemma 26 in [9]) that

V θ∗
λ (ρ) − V

θ
λ (ρ)

=
1

1 − γ
∑
s

[dπθ
ρ (s) ⋅ λ ⋅DKL (πθ(⋅ ∣ s)∥πθ∗(⋅ ∣ s))]

≥
1

1 − γ
∑
s

[dπθ
ρ (s) ⋅ λ ⋅

1

2 ln 2
∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥

2
1]

≥
λ

2 ln 2
∑
s

[ρ(s) ⋅ ∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥
2
1]

≥
λ

2 ln 2
∑
s

[ρ(s) ⋅ ∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥
2
2]

≥
λ

2 ln 2
[ρ(s)∥πθ(⋅ ∣ s) − πθ∗(⋅ ∣ s)∥

2
2] ∀s ∈ S

≥
λmins ρ(s)

2 ln 2
∣πθ(a ∣ s) − πθ∗(a ∣ s)∣

2
, ∀s ∈ S, a ∈ A,

where the first inequality is due to Theorem 11.6 in [44] stating
that

DKL [P (⋅) ∣ Q(⋅)] ≥
1

2 ln 2
∥P (⋅) −Q(⋅)∥21

for every two discrete distributions P (⋅) and Q(⋅). Moreover,
the second inequality is due to dπθ

ρ (s) ≥ (1 − γ)ρ(s) and the
third inequality is due to the equivalence between ℓ1-norm and
ℓ2-norm. This completes the proof. ◻

B. Proof of Lemma 14

Since the sequence Ωn is decreasing and Ωn ⊇ En−1 (by the
second part of Lemma 16), Lemma 17 yields that P (ΩT2) ≥

infn P (Ωn) ≥ infn P (En−1) ≥ 1 − δ/6 provided that t0 is
chosen large enough.

Now, it remains to show that ΩT2 ⊆ Ω
T2

α,1. We fix a realization
in ΩT2 such that D(θt) ≤ 2ϵ0 +

√
ϵ0 for all t = 1,2, . . . , T2. By

Lemma 18, we have

∣πθt(a ∣ s) − πθ∗(a ∣ s)∣

≤

¿
Á
ÁÀ 2D(θt) ln 2

λmins ρ(s)
≤

¿
Á
ÁÀ2(2ϵ0 +

√
ϵ0) ln 2

λmins ρ(s)

≤

¿
Á
ÁÀ 6

√
ϵ0 ln 2

λmins ρ(s)
≤ α exp(

−r̄

(1 − γ)λ
) ≤ αmin

s,a
πθ∗(a ∣ s),

where the second inequality is due to the condition that the
event ΩT2 occurs, the third inequality is due to ϵ0 ≤

√
ϵ0 when

ϵ0 ≤ 1, the forth inequality is due to the definition of ϵ0, and the
last inequality is due to Theorem 1 in [45] where it holds that
logπ∗λ(a ∣ s) =

1
λ
(Qπ∗λ(s, a) − V π∗λ(s)) ≥ −r̄

(1−γ)λ
, ∀(s, a) ∈

S ×A.
Now, it can be easily verified that πθt(a ∣ s) ≥ πθ∗(a ∣

s)−αmins,a πθ∗(a ∣ s). For every t ∈ {1,2, . . . , T2}, let s̄, ā =
argmins,a πθt(a ∣ s). One can write

min
s,a

πθt(a ∣ s) =πθt(ā ∣ s̄) ≥ πθ∗(ā ∣ s̄) − αmin
s,a

πθ∗(a ∣ s)

≥(1 − α)min
s,a

πθ∗(ā ∣ s̄),

where the last inequality is due to π(a∣s) ≥mins,a π(a∣s) for
every s ∈ S and a ∈ A. Thus, we obtain P (ΩT2

α,1) ≥ P (ΩT2) ≥

1 − δ/6. This completes the proof.
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IX. PROOF OF THEOREM 1

From Lemma 11, we conclude that, with a large batch size,
the iterations will converge to a neighborhood of the optimal
solution with high probability. From Lemma 14, we know that,
with a good initialization, the policies will remain in the interior
of the probability simplex with high probability. By combining
the above two results, we are now ready to prove the sample
complexity of the stochastic PG for entropy-regularized RL.

From Lemma 11, we can conclude that P(D(θT1) ≤ ϵ0) ≥ 1−
δ after the first phase. We then establish the algorithm’s sample
complexity when the initial policy of the second phase satisfies
the good initialization condition P(D(θT1) ≤ ϵ0) ≥ 1 − δ. It
follows from Lemma 15 that

D(θt+1)1Ωt
α,T1

≤(1 −
ηtC(θt)

4
)D(θt)1Ωt

α,T1
−
ηt
2
ξt1Ωt

α,T1
+
ηt
4
∥et∥

2
2 1Ωt

α,T1
,

for all t ≥ T1, where ξt = ⟨et,∇V
θt
λ (ρ)⟩ and Ωt

α,T1
is defined

in (12). When the event Ωt
α,T1

occurs, we have C(θt) ≥ Cα,
where Cα is defined in (9). By taking the expectation, we have

E [−
ηt
2
ξt1Ωt

α,T1
+
ηt
4
∥et∥

2
2 1Ωt

α,T1
]

=E [1Ωt
α,T1

E [−
ηt
2
ξt +

ηt
4
∥et∥

2
2 ∣Ft]]

=E [1Ωt
α,T1

E [
ηt
4
∥et∥

2
2 ∣Ft]] ≤

ηtσ
2

4B
,

where the first equality is because Ωt
α,T1

is deterministic con-
ditioning on Ft, the second equality is due to the unbiasedness
of ξt conditioning on Ft, and the first inequality is due to (17).
Therefore, E[D(θt+1)1Ωt

α,T1
] ≤ (1 − ηtCα

4
)E [D(θt)1Ωt

α,T1
]+

ηtσ
2

4B
. Arguing inductively yields that

E[D(θT+1)1ΩT
α,T1

]

≤
T2

∏
i=1

(1 −
ηT1+iCα

4
)D(θT1) +

T2

∑
i=1

(1 −
ηT1+iCα

4
)

i ηT1+iσ
2

4B

≤
T2

∏
i=1

(1 −
ηT1+iCα

4
)D(θT1) +

T2

∑
i=1

ηT1+iσ
2

4B
.

By taking ηT1+i =
4

Cα(i+t0)
, we obtain that

E[D(θT+1)1ΩT
α,T1

] ≤
T2

∏
i=1

(
i + t0 − 1

i + t0
)D(θT1) +

σ2

CαB

T2

∑
i=1

1

i + t0

≤
t0

T2 + t0
D(θT1) +

σ2 ln (T2 + t0)

BCα
.

By the law of total probability and the Markov inequality,

we obtain that

P(D(θT+1) ≥ ϵ)

=P(D(θT+1) ≥ ϵ,Ω
T
α,T1
) + P(D(θT+1) ≥ ϵ, (Ω

T
α,T1
)
c
)

=P(D(θT+1) ≥ ϵ ∣ Ω
T
α,T1
)P(ΩT

α,T1
)

+ P(D(θT+1) ≥ ϵ ∣ (Ω
T
α,T1
)
c
)P((ΩT

α,T1
)
c
)

≤
E[D(θT+1) ∣ ΩT

α,T1
]

ϵ
P(ΩT

α,T1
)

+ P(D(θT+1) ≥ ϵ1
c
ΩT

α,T1

)P((ΩT
α,T1
)
c
)

≤
E[D(θT+1)1ΩT

α,T1
]

ϵ
+ δ/6

≤
t0

(T2 + t0)ϵ
D(θT1) +

σ2 ln (T2 + t0)

BCαϵ
+ δ/6,

where the second inequality follows from Lemma 14. To
guarantee P(D(θT+1) ≥ ϵ) ≤ δ

2
, it suffices to have T2 =

t0D(θT1
)

6δϵ
− t0,B =

σ2 ln(T2+t0)
6Cαδϵ

. This completes the proof.

X. CONCLUSION

In this work, we studied the global convergence and
the sample complexity of stochastic PG methods for the
entropy-regularized RL with the soft-max parameterization.
We proposed two new (nearly) unbiased PG estimators for the
entropy-regularized RL and proved that they have a bounded
variance even though they could be unbounded. In addition, we
developed a two-phase stochastic PG algorithm to overcome
the non-coercive landscape challenge. This work provided
the first global convergence result for stochastic PG methods
for the entropy-regularized RL and obtained the sample
complexity of Õ( 1

ϵ2
), where ϵ is the optimality threshold.

This work paves the way for a deeper understanding of other
stochastic PG methods with entropy-related regularization,
including those with trajectory-level KL regularization and
policy reparameterization. An important future direction is to
study the dependence of the sample complexity of the entropy-
regularized RL with respect to the dimension of the state space
and improve the bound.
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APPENDIX A
PROPERTIES OF STOCHASTIC POLICY GRADIENT

A. Proof of Lemma 2

Proof. The gradient 2 follows from Proposition 2 in [28]. In
particular, they consider the softmax parameterization with
linear function approximation:

πθ(a ∣ s) =
exp(θ⊺ϕs,a)

∑a′A exp(θ⊺ϕs,a′)

Our tabular softmax parameterization setting is a special case
by taking ϕs,a = e(s, a) where e(s, a) ∈ R∣S∣∣A∣ is a vector
where the (s, a)-th entry is equal to 1 while all other entries
equal to 0.

The second part of the statement of Lemma 2 holds due to the
following simple algebra:

∥
∂V θ

λ (ρ)

∂θ
∥ ≤

1

1 − γ
max
a,s
∥∇ logπθ(a ∣ s)∥

×max
s
∥∑

a

πθ(a ∣ s) [Q
θ
λ(s, a) − λ logπθ(a ∣ s)]∥

=
1

1 − γ
max
a,s
∥∇ logπθ(a ∣ s)∥ ×max

s
∥V θ

λ (s)∥

≤
2(r̄ + λ log ∣A∣)

(1 − γ)2
.

◻

B. Proof of Lemma 4

Proof. We first show the unbiasedness of the Q-estimate, i.e.,
E [Q̂θ

λ(s, a) ∣ θ, s, a] = Qθ
λ(s, a) for all (s, a) ∈ S × A and

θ ∈ Rd. In particular, from the definition of Qθ
λ(s, a), we have

E [Q̂θ
λ(s, a) ∣ θ, s, a]

=E
⎡
⎢
⎢
⎢
⎢
⎣

r (s0, a0) +
H′

∑
h=1

γh/2
⋅ (r (sh, ah) − λ logπθ(ah∣sh))

∣ θ, s0 = s, a0 = a]

=E [r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2
⋅ (r (sh, ah)

−λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a] ,

where we have replaced H ′ by ∞ since we use the indicator
function 1 such that the summand for h ≥ H ′ is null. In
addition, by the law of total expectation, we have

E [Q̂θ
λ(s, a) ∣ θ, s, a] (18)

=EH′ [Eτ [r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2
⋅ (r (sh, ah)

−λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′
]] ,

where the trajectory τ equal to {s0, a0, s1, a1, . . .}. The inner
expectation over τ can be written as

Eτ [r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2
⋅ (r (sh, ah)

−λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′
]

=∑
τ

[r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2
⋅ (r (sh, ah)

−λ logπθ(ah∣sh))] ⋅ P(τ) ∣ θ, s0 = s, a0 = a,H
′

=r (s0, a0) +∑
τ

∞

∑
h=1

[1H′≥h≥0γ
h/2
⋅ (r (sh, ah)

−λ logπθ(ah∣sh))] ⋅ P(τ) ∣ θ, s0 = s, a0 = a,H
′. (19)
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By the definition of the probability over the sample trajectory
P(τ), for every h ∈ {0,1,2, . . .}, it holds that

∣(r (sh, ah) − λ logπθ(ah∣sh)) ⋅ P(τ)∣

= ∣(r (sh, ah) − λ logπθ(ah∣sh)) ⋅ πθ(ah∣sh) ⋅ P(s1∣s0, a0)

⋅ πθ(a1∣s1) . . . ⋅ P(sh∣sh−1, ah−1) ⋅ P(sh+1∣sh, ah) . . .

P(sH′ ∣sH′−1, aH′−1) ⋅ ⋅πθ(aH′ ∣sH′)∣

≤r̄ +
λ

e
.

where the last inequality follows from P(s′∣s, a) ≤ 1, πθ(a∣s) ≤
1 for all s, s′ ∈ S and a ∈ A together with ∣x logx∣ ≤ 1

e
for

x ∈ [0,1]. Thus, for each trajectory τ and N > 0, we have

N

∑
h=1

[1H′≥h≥0γ
h/2
⋅ (r (sh, ah) − λ logπθ(ah∣sh))] ⋅ P(τ)

≤
1

1 − γ1/2
(r̄ +

λ

e
) . (20)

Since left-hand side of (20) is non-decreasing and the limit
as N → ∞ exists, by the Monotone Convergence Theorem,
we can interchange the limit with the summation over the
trajectory τ in (19) as follows:

Eτ [r (s0, a0) +
∞

∑
h=1

1H′≥h≥0γ
h/2
⋅ (r (sh, ah)

−λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′
]

=r (s0, a0) +
∞

∑
h=1

∑
τ

[1H′≥h≥0γ
h/2
⋅ (r (sh, ah)

−λ logπθ(ah∣sh))] ⋅ P(τ) ∣ θ, s0 = s, a0 = a,H
′

=r (s0, a0) +
∞

∑
h=1

Eτ [1H′≥h≥0γ
h/2
(r (sh, ah)

−λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′
] .

In addition, for every N > 0, we have

N

∑
h=1

Eτ [1H′≥h≥0γ
h/2
(r (sh, ah) − λ logπθ(ah∣sh))

∣ θ, s0 = s, a0 = a,H
′
] + r (s0, a0)

≤ γ1/2
∞

∑
h=0

Eτ [γ
(h+1)/2

(r (sh, ah) − λ logπθ(ah∣sh))

∣ θ, s0 = s, a0 = a,H
′
] + r (s0, a0)

≤ r (s0, a0) + γ
1/2Es1 [V

θ
λ,γ/2(s1) ∣ s0, a0]

≤ r̄ +
γ/2(r̄ + λ log ∣A∣)

1 − γ/2

≤
r̄ + λ log ∣A∣

1 − γ/2
, (21)

where the third inequality is due to the boundedness of the
enrtopy-regularized value function in Lemma 1. Furthermore,
since (21) is non-decreasing and the limit as N →∞ exists,

by the Monotone Convergence Theorem, we can interchange
the limit with the outer-expectation over H ′ in (18) as follows:

E [Q̂θ
λ(s, a) ∣ θ, s, a] (22)

=r (s0, a0) + lim
N→∞

EH′ [Eτ [
N

∑
h=1

1H′≥h≥0γ
h/2
⋅ (r (sh, ah)

−λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a,H
′
]]

=r (s0, a0) + lim
N→∞

N

∑
h=1

[Eτ [EH′ [1H′≥h≥0]γ
h/2
⋅ (r (sh, ah)

−λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a]]

=r (s0, a0) + lim
N→∞

N

∑
h=1

[Eτ [γ
h
⋅ (r (sh, ah)

−λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a]]

=r (s0, a0) + Eτ [
∞

∑
h=1

[γh
⋅ (r (sh, ah)

−λ logπθ(ah∣sh)) ∣ θ, s0 = s, a0 = a]]

=Qθ
λ(s, a)

where we have also used the fact that H ′ is drawn independently
from the trajectory τ in the first equality, the fact that H ′ ∼
Geom(1 − γ1/2) and thus EH′ [1H′≥h≥0] = γ

t/2 in the second
equality, and the interchangeability between the limit and the
summation over the trajectory τ in the third equality. This
completes the proof of the unbiasedness of Q̂θ

λ(s, a).
Now, we are ready to show unbiasedness of the stochastic

gradients ∇̂V θ
λ (ρ). It follows from Lemma 2 that

E[∇̂V θ
λ (ρ) ∣ θ]

=EH,(sH ,aH) {EH′,(s′
1∶H′ ,a

′
1∶H′)
[∇̂V θ

λ (ρ)

∣ θ, s′0 = sH , a′0 = aH] ∣ θ}

=EH,(sH ,aH) (EH′,(s′
1∶H′ ,a

′
1∶H′)
{

1

1 − γ
∇θ logπθ(a

′
0∣s
′
0)

(Q̂θ
λ(s

′
0, a

′
0) − λ logπθ(a

′
0 ∣ s

′
0)) ∣ θ, s

′
0 = sH , a′0 = aH ,} ∣ θ)

=EH,(sH ,aH) (
1

1 − γ
∇θ logπθ(aH ∣sH)EH′,(s′

1∶H′ ,a
′
1∶H′)

{(Q̂θ
λ(s

′
0, a

′
0) − λ logπθ(a

′
0 ∣ s

′
0)) ∣ θ, s

′
0 = sH , a′0 = aH ,} ∣ θ)

=EH,(sH ,aH) {
1

1 − γ
∇θ logπθ(aH ∣sH)

(Qθ
λ(sH , aH) − λ logπθ(aH ∣ sH)) ∣ θ} .

where we have used (22) in the last equality. By using the
identity function 1h=H , the above expression can be further
written as

E[∇̂V θ
λ (ρ) ∣ θ] (23)

=
1

1 − γ
EH,(sH ,aH) {

∞

∑
h=0

1h=H∇θ logπθ(aH ∣sH)

(Qθ
λ(sH , aH) − λ logπθ(aH ∣ sH)) ∣ θ} .
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Since for the softmax parameterization πθ, we have

∂ logπθ(aH ∣sH)

∂θs,a
=

⎧⎪⎪
⎨
⎪⎪⎩

−πθ(a∣s)πθ(aH ∣sH), (s, a) ≠ (sH , aH),

πθ(aH ∣sH) − πθ(aH ∣sH)πθ(aH ∣sH), (s, a) = (sH , aH).

Thus, the term ∑
∞
h=0 1h=H∇θ logπθ(aH ∣sH)

(Qθ
λ(sH , aH) − λ logπθ(aH ∣ sH)) is uniformly bounded

for every N > 0 and non-decreasing with respect to N , we
can interchange the limit and the expectation in (23) by the
Monotone Convergence Theorem to obtain

E[∇̂V θ
λ (ρ) ∣ θ]

=
∞

∑
h=0

P(H = h)
1 − γ

⋅ EH,(sH ,aH) {∇θ logπθ(aH ∣sH)

(Qθ
λ(sH , aH) − λ logπθ(aH ∣ sH)) ∣ θ}

=
∞

∑
h=0

γh
⋅ E(sh,ah) {∇θ logπθ(aH ∣sH)

(Qθ
λ(sH , aH) − λ logπθ(aH ∣ sH))}

=
∞

∑
h=0

γh
∑

s∈S,a∈A

P(sh = s, ah = a∣s0 ∼ ρ, θ)∇θ logπθ(a∣s)

(Qθ
λ(s, a) − λ logπθ(a ∣ s))

= ∑
s∈S,a∈A

∇θ logπθ(a∣s) (Q
θ
λ(s, a) − λ logπθ(a ∣ s))

∞

∑
h=0

γhP(sh = s, ah = a∣s0 ∼ ρ, θ)

=
1

1 − γ
Es∼d

πθ
ρ ,a∼πθ(⋅∣s)

[∇θ logπθ(a∣s)

(Qθ
λ(s, a) − λ logπθ(a ∣ s))] .

where the second equality is due to the fact that H ∼ Geom(1−
γ) and thus P(h = H) = (1 − γ)γh, and the forth equality is
due to the linearity of the integral and the finiteness of the state
and action spaces. This completes the proof of unbiasedness
of ∇̂V θ

λ (ρ). ◻

C. Proof of Lemma 5

Proof. We first note that the policy gradient estimator ∇̂V θ
λ (ρ)

can be decomposed as:

∇θ logπθ(aH ∣sH) (Q̂
θ
λ(sH , aH) − λ logπθ(sH , aH))

=∇θ logπθ(aH ∣sH)
⎛

⎝

H′

∑
i=0

γi/2
(r(s′i, a

′
i) − λ logπθ(a

′
i∣s
′
i))
⎞

⎠
,

where H ∼ Geom(1 − γ),H ′ ∼ Geom(1 − γ1/2), (sH , aH) ∼
νπθ
ρ (s, a), s

′
0 = sH , a′0 = aH . To streamline the presentation,

we introduce the following notations:

g1(sH , aH) =
H′

∑
i=0

γi/2r(s′i, a
′
i),

g2(sH , aH) =
H′

∑
i=0

γi/2λ logπθ(a
′
i∣s
′
i),

Then, the policy gradient estimator ∇̂V θ
λ (ρ) can be decomposed

as:

∇̂V θ
λ (ρ) =

1

1 − γ
∇θ logπθ(aH ∣sH) (g1(sH , aH) − g2(sH , aH)) .

By the definition of the variance and the Cauchy-Schwarz
inequality, we have

Var(∇̂V θ
λ (ρ))

=
∥∇θ logπθ(aH ∣sH)∥

2

(1 − γ)2
Var (g1(sH , aH) − g2(sH , aH))

≤
2 ∥∇θ logπθ(aH ∣sH)∥

2

(1 − γ)2
(Var (g1(sH , aH))

+Var (g2(sH , aH)))

≤
8

(1 − γ)2
(Var (g1(sH , aH)) +Var (g2(sH , aH))) ,

where the last inequality follows from ∥∇θ logπθ(aH ∣sH)∥ ≤ 2
[25]. Since g1(s, a) is uniformly bounded, i.e., ∥g1(s, a)∥ ≤

r̄
1−γ1/2 for all s ∈ S, a ∈ A, we must have

Var (g1(sH , aH)) ≤
r̄2

(1 − γ1/2)2
.

Then, it remains to prove the bounded variance of g2. Firstly,
it can be seen that

∥g2∥
2
≤λ2 ⎛

⎝

H′

∑
i=0

γi/2 logπθ(a
′
i∣s
′
i)
⎞

⎠

2

=λ2 ⎛

⎝

H′

∑
i=0

γi/4γi/4 logπθ(a
′
i∣s
′
i))
⎞

⎠

2

≤λ2 ⎛

⎝

H′

∑
i=0

γi/2⎞

⎠

⎛

⎝

H′

∑
i=0

γi/2
(logπθ(a

′
i∣s
′
i)))

2⎞

⎠

≤
λ2

1 − γ1/2

⎛

⎝

H′

∑
i=0

γi/2
(logπθ(a

′
i∣s
′
i)))

2⎞

⎠
,

where the second inequality is due to the Cauchy-Schwarz
inequality. By fixing the state action pair (sH , aH) and the
horizon H ′ for now and taking expectation of g2 only over
the sample trajectory τ ′ = {s′0, a

′
0, . . . , s

′
H , a′H}, it holds that

Eτ ′∼p(τ ′∣θ) [∥g2∥
2
]

≤
λ2

1 − γ1/2

H′

∑
i=0

γi/2Eτ ′∼p(τ ′∣θ) [(logπθ(a
′
i∣s
′
i))

2
] . (24)

Since the realizations of a′i and s′i do not depend on the
randomness in s′i+1, a

′
i+1, . . . , s

′
H , we have

Eτ ′∼p(τ ′∣θ) [(logπθ(a
′
i∣s
′
i))

2
]

=Es′1∼p(⋅∣a
′
0,s

′
0)...a

′
H−1∼πθ(⋅∣s′H−1),s

′
H
∼p(⋅∣s′

H−1,a
′
H−1)
[(logπθ(a

′
i∣s
′
i))

2
]

=Es′1∼p(⋅∣a
′
0,s

′
0)...a

′
i∼πθ(⋅∣s′i) [(logπθ(a

′
i∣s
′
i))

2
]

=Es′1∼p(⋅∣a
′
0,s

′
0)...s

′
i∼p(⋅∣a

′
i−1,s

′
i−1)

⎡
⎢
⎢
⎢
⎢
⎣

∑
a′i∈A

πθ(a
′
i∣s
′
i) (logπθ(a

′
i∣s
′
i))

2
⎤
⎥
⎥
⎥
⎥
⎦

.
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By checking the optimality conditions for the optimization
problem

max
n

∑
i=1

xi(logxi)
2 such that

n

∑
i=1

xi = 1, (25)

it can be concluded that the maximizer for the constrained
problem (25) is x1 = x2 = . . . = xn =

1
n

and the maximum
solution is (logn)2.

Thus, we have ∑ah∈A
πθ(ah∣sh) (logπθ(a

i
h∣s

i
h))

2
≤

(log ∣A∣)2 and

Eτ ′∼p(τ ′∣θ) [(logπθ(a
i
h∣s

i
h))

2
]

≤Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...sh∼p(⋅∣ah−1,sh−1) [(log ∣A∣)
2]

=(log ∣A∣)2.

By substituting the above inequality into (24), we obtain that

Eτ ′∼p(τ ′∣θ) [∥g2∥
2
] ≤

λ2

1 − γ1/2

H′

∑
i=0

γi/2Eτ ′∼p(τ ′∣θ) [(logπθ(a
′
i∣s
′
i))

2
]

≤
(λ log ∣A∣)2

1 − γ1/2

H′

∑
i=0

γi/2

≤
(λ log ∣A∣)2

(1 − γ1/2)2
,

for every H ′ > 0. By taking expectation of g2 over the state
action pair (sH , aH) and the horizon H ′, it yields that

E [∥g2∥
2
] ≤
(λ log ∣A∣)2

(1 − γ1/2)2
,

which further implies that Var [∥g2∥
2
] ≤

(λ log ∣A∣)2

(1−γ1/2)2 . This
completes the proof. ◻

D. Proof of Lemma 6

Proof. To simplify the notation, we define r̃λj,θ ∶= rj(sj , aj) −
λ logπθ(aj ∣sj) By definition, we have

E[∇̂V θ,H
λ (ρ)] −∇V θ

λ (ρ)

=E
⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

∇ logπθ(ah∣sh)
⎛

⎝

∞

∑
j=H

γj r̃λj,θ
⎞

⎠

+
∞

∑
h=H

∇ logπθ(ah∣sh)
⎛

⎝

∞

∑
j=h

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

Then, by the Cauchy-Schwarz inequality and the triangle
inequality, we obtain

∥E[∇̂V θ,H
λ (ρ)] −∇V θ

λ (ρ)∥
2

≤E
⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

∥∇ logπθ(ah∣sh)∥
⎛

⎝

∞

∑
j=H

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∑
h=H

∥∇ logπθ(ah∣sh)∥
⎛

⎝

∞

∑
j=h

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

Since ∥∇ logπθ(a∣s)∥2 ≤ 2 for all θ ∈ R∣S∣∣A∣, it holds that

E[∇̂V θ,H
λ (ρ)] −∇V θ

λ (ρ)2

≤2E
⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(26)

+ 2E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∑
h=H

⎛

⎝

∞

∑
j=h

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (27)

For the term in (26), we can rewrite it as

2Eτ∞

⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=∑
τ∞

⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⋅ P(τ∞)

Since left-hand side of the above equation is non-decreasing and
the limit as N →∞ exists, by the the Monotone Convergence
Theorem, we can interchange the limit with the summation
over the trajectory τ∞ in (26) as follows:

2Eτ∞

⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= 2
H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γjEτ∞ [rj(sj , aj) − λ logπθ(aj ∣sj)]
⎞

⎠
.

Due to −∑a π(a∣s) ⋅ logπ(a∣s) ≤ log ∣A∣, the term in (26) can
be upper bounded as

2Eτ∞

⎡
⎢
⎢
⎢
⎢
⎣

H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ 2(r̄ + λ log ∣A∣)
H−1

∑
h=0

⎛

⎝

∞

∑
j=H

γj⎞

⎠

≤
2(r̄ + λ log ∣A∣)HγH

1 − γ
.

Similarly, we can interchange the limit with the summation
over the trajectory τ∞ in (27) and upper bound it as

2E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∑
h=H

⎛

⎝

∞

∑
j=h

γj r̃λj,θ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤2(r̄ + λ log ∣A∣)
∞

∑
h=H

∞

∑
j=h

γj

≤
2(r̄ + λ log ∣A∣)γH

(1 − γ)2
.

Combining the above two inequalities, we have

∥E[∇̂V θ,H
λ (ρ)] −∇V θ

λ (ρ)∥
2

≤
2(r̄ + λ log ∣A∣)γH

(1 − γ)
(H +

1

1 − γ
) .

This completes the proof. ◻

E. Proof of Lemma 7

Proof. Step 1: Decomposition of the variance: For the
simplicity of the notation, we first define:

g1(τ
H
∣θ, ρ) =

H−1

∑
h=0

⎛

⎝

h

∑
j=0

∇ logπθ(aj ∣sj)
⎞

⎠
γhrh(sh, ah) (28)

g2(τ
H
∣θ, ρ) = λ

H−1

∑
h=0

⎛

⎝

h

∑
j=0

∇ logπθ(aj ∣sj)
⎞

⎠
(−γh logπθ(ah∣sh)) .

(29)
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By the definition of the variance and the Cauchy-Schwarz
inequality, we have

Var(∇̂V θ,H
λ (ρ))

=E [(g1(τ
H
∣θ, ρ) + g2(τ

H
∣θ, ρ)) (30)

−E[g1(τ
H
∣θ, ρ)] − E[g2(τ

H
∣θ, ρ)])

2
]

≤3E[(g1(τ
H
∣θ, ρ) − E[g1(τ

H
∣θ, ρ)])2]

+ 3E[(g2(τ
H
∣θ, ρ)) − E[g2(τ

H
∣θ, ρ))])2] (31)

=3 (Var(g1(τH ∣θ, ρ)) +Var(g2(τH ∣θ, ρ))) . (32)

Step 2: Bounded variance of g1: As shown in Lemma 4.2
of [46], the fact that ∥∇ logπθ(a∣s)∥2 ≤ 2 for all θ ∈ R∣S∣∣A∣

directly implies that Var(g1(τH ∣θ, ρ)) ≤ 4r̄2

(1−γ)4
for all θ ∈

R∣S∣∣A∣.
Step 3: Bounded variance of g2: Then, it remains to prove

the bounded variance of g2. Firstly, it can be observed that

∥g2∥ =λ
XXXXXXXXXXX

H−1

∑
h=0

⎛

⎝

h

∑
j=0

∇ logπθ(a
i
j ∣s

i
j)
⎞

⎠
(−γh logπθ(a

i
h∣s

i
h))

XXXXXXXXXXX

≤ − λ
H−1

∑
h=0

⎛

⎝

h

∑
j=0

∥∇ logπθ(a
i
j ∣s

i
j)∥
⎞

⎠
γh logπθ(a

i
h∣s

i
h)

≤ − 2λ
H−1

∑
h=0

(h + 1)γh logπθ(a
i
h∣s

i
h).

where the first inequality is due to the triangle inequality and
the second inequality is due to ∥∇ logπθ(a

i
j ∣s

i
j)∥ ≤ 2. Then,

by taking the squre of ∥g2∥, we obtain

∥g2∥
2
≤4λ2

(
H−1

∑
h=0

(h + 1)γh logπθ(a
i
h∣s

i
h))

2

=4λ2
(
H−1

∑
h=0

(h + 1)
√
γh
√
γh logπθ(a

i
h∣s

i
h))

2

≤4λ2
(
H−1

∑
h=0

(h + 1)2γh
)(

H−1

∑
h=0

γh (logπθ(a
i
h∣s

i
h))

2
)

=4λ2
(
H−1

∑
h=0

(h2
+ 2h + 1)γh

)(
H−1

∑
h=0

γh (logπθ(a
i
h∣s

i
h))

2
)

≤4λ2
(

γ2 + γ

(1 − γ)3
+

2γ

(1 − γ)2
+

1

1 − γ
)

(
H−1

∑
h=0

γh (logπθ(a
i
h∣s

i
h))

2
)

=4λ2
(

γ + 1

(1 − γ)3
)(

H−1

∑
h=0

γh (logπθ(a
i
h∣s

i
h))

2
)

where the second inequality is due to the Cauchy-Schwarz
inequality and the last inequality is due to ∑∞h=0 h

2γh =
γ2
+γ

(1−γ)3
,

∑
∞
h=0 hγ

h =
γ

(1−γ)2
and ∑∞h=0 γ

h = 1
1−γ

.
By taking expectation of g2 over the sample trajectory τH ,

it holds that

EτH∼p(τH ∣θ) [∥g2∥
2
]

≤4λ2
(

γ + 1

(1 − γ)3
)

H−1

∑
h=0

γhEτH∼p(τH ∣θ) [(logπθ(a
i
h∣s

i
h))

2
] .

(33)

Since the realizations of aih and sih do not depend on the
randomness in sh+1, ah+1, . . . , sH , we have

EτH∼p(τH ∣θ) [(logπθ(a
i
h∣s

i
h))

2
]

=Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...aH−1∼πθ(⋅∣sH−1),sH∼p(⋅∣sH−1,aH−1)

[(logπθ(a
i
h∣s

i
h))

2
]

=Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...ah∼πθ(⋅∣sh) [(logπθ(a
i
h∣s

i
h))

2
]

=Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...sh∼p(⋅∣ah−1,sh−1)
⎡
⎢
⎢
⎢
⎣
∑

ah∈A

πθ(ah∣sh) (logπθ(a
i
h∣s

i
h))

2
⎤
⎥
⎥
⎥
⎦
.

Since the maximizer for the constrained problem

max
n

∑
i=1

xi(logxi)
2 such that

n

∑
i=1

xi = 1,

is x1 = x2 = ⋯ = xn =
1
n

and the maximum solution is (logn)2.
Thus, we have ∑ah∈A

πθ(ah∣sh) (logπθ(a
i
h∣s

i
h))

2
≤ (log ∣A∣)2

and

EτH∼p(τH ∣θ) [(logπθ(a
i
h∣s

i
h))

2
]

≤Es0∼ρ,a0∼πθ(⋅∣s0),s1∼p(⋅∣a0,s0)...sH∼p(⋅∣aH−1,sH−1) [(log ∣A∣)
2]

=(log ∣A∣)2. (34)

By combining (33) and (34), we have

Var(g2) ≤EτH∼p(τH ∣θ) [∥g2∥
2
]

≤4λ2
(

γ + 1

(1 − γ)3
)

H−1

∑
h=0

γhEτ∼p(τ ∣θ) [(logπθ(a
i
h∣s

i
h))

2
]

≤4λ2
(

γ + 1

(1 − γ)3
)

H−1

∑
h=0

γh
(log ∣A∣)2

≤
8λ2(log ∣A∣)2

(1 − γ)4
.

Finally, by substituting Var(g1),Var(g2) and Var(g3) into
(30), it holds that

Var(∇̂V θ,H
λ (ρ)) ≤

12r̄2 + 24λ2(log ∣A∣)2

(1 − γ)4
.

This completes the proof. ◻

APPENDIX B
OTHER HELPFUL RESULTS.

Lemma 19: Suppose that f(x) is L̄-smooth, i.e.,
∥∇f(x) −∇f(y)∥ ≤ L̄ ∥x − y∥. Given 0 < ηt ≤

1
2L̄

for all
t ≥ 1, let {xt}

T
t=1 be generated by xt+1 = xt + ηtut and let

et = ut −∇f(xt). We have

f(xt+1) ≥f(xt) +
ηt
4
∥ut∥

2
2 −

ηt
2
∥et∥

2
2 .
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Proof. Since f(x) is L̄-smooth, one can write

f(xt+1) − f(xt) − ⟨ut, xt+1 − xt⟩

=f(xt+1) − f(xt) − ⟨∇f(xt), xt+1 − xt⟩

+ ⟨
√
ηt(∇f(xt) − ut),

1
√
ηt
(xt+1 − xt)⟩

≥ −
2L̄

2
∥xt+1 − xt∥

2
−
bηt
2
∥∇f(xt) − ut∥

2
2 −

1

2bηt
∥xt+1 − xt∥

2
2

=(−
1

2bηt
−
2L̄

2
) ∥xt+1 − xt∥

2
2 −

bηt
2
∥et∥

2
2 ,

where the constant b > 0 is to be determined later. By the
above inequality and the definition of xt+1, we have

f(xt+1)

≥f(xt) + ⟨ut, xt+1 − xt⟩ − (
1

2bηt
+
2L̄

2
) ∥xt+1 − xt∥

2
2 −

bηt
2
∥et∥

2
2

=f(xt) + ηt ∥ut∥
2
− (

ηt
2b
+
2L̄η2t
2
) ∥ut∥

2
2 −

bηt
2
∥et∥

2
2 .

By choosing b = 1 and using the fact that 0 < ηt ≤ 1
2L̄

, we have

f(xt+1) ≥f(xt) + (
ηt
2
−
Lη2t
2
) ∥ut∥

2
2 −

ηt
2
∥et∥

2
2

≥f(xt) +
ηt
4
∥ut∥

2
2 −

ηt
2
∥et∥

2
2 .

This completes the proof. ◻
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