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Abstract
Real-time inference is a challenge of real-world
reinforcement learning due to temporal differ-
ences in time-varying environments: the system
collects data from the past, updates the decision
model in the present, and deploys it in the future.
We tackle a common belief that continually up-
dating the decision is optimal to minimize the
temporal gap. We propose forecasting an online
reinforcement learning framework and show that
strategically pausing decision updates yields bet-
ter overall performance by effectively managing
aleatoric uncertainty. Theoretically, we compute
an optimal ratio between policy update and hold
duration and show that a non-zero policy hold
duration provides a sharper upper bound on the
dynamic regret. Our experimental evaluations on
three different environments also reveal that a non-
zero policy hold duration yields higher rewards
compared to continuous decision updates.

1. Introduction
Real-world reinforcement learning (RL) bridges the gap
between the current literature on RL and real-world prob-
lems. Real-time inference, a key challenge in real-world
RL, requires that inference occur in real-time at the control
frequency of the system (Dulac-Arnold et al., 2019). For RL
deployment in a production system, policy inference must
occur in real-time, matching the control frequency of the
system. This could range from milliseconds for tasks such
as recommendation systems (Covington et al., 2016; Steck
et al., 2021) or autonomous vehicle control (Hester & Stone,
2013), to minutes for building control systems (Evans &
Gao). This constraint prevents us from speeding up the task
beyond real-time to rapidly generate extensive data (Silver
et al., 2016; Espeholt et al., 2018) or slowing it down for
more computationally intensive approaches (Levine et al.,
2019; Schrittwieser et al., 2020). One strategy for real-time
action is to employ a multi-threaded architecture, where
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model learning and planning occur in background threads
while actions are returned in real-time (Hester & Stone,
2013; Imanberdiyev et al., 2016; Glavic et al., 2017).

In this paper, we show that intentionally pausing model
learning can lead to better overall performance than contin-
uous model updating. Our study is based on deriving an
analytical solution for the optimal ratio between the paus-
ing and updating phases. Perhaps most importantly, this
paper offers the insight that the pausing phase is crucial
to handling an aleatoric uncertainty that stems from the
environment’s intrinsic uncertainty.

This paper begins with a fundamental observation of the real-
time inference mechanism based on prediction: the agent
forecasts the future based on past data, and then continually
updates decisions in the present based on future predictions.
This highlights the significance of balancing conservatism
or pessimism in decision-making, based on the three types
of uncertainties: epistemic, aleatoric, and predictive uncer-
tainties (Gal, 2016). We define conservatism as expecting
past trends to continue in the future, and pessimism as antic-
ipating future differences. Although accumulating extensive
past data reduces aleatoric uncertainty, and a prediction
model with high capacity lessens predictive uncertainty, the
frequency of policy updates still remains a key factor due to
unknown aleatoric uncertainty in the present.
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Figure 1. (a) Non-stationary bandit setting, (b) conservative policy,
(c) pessimistic policy

To elucidate the importance of the above problem, consider
a recommendation system tasked with optimally suggesting
item x0 or x1 to a user whose preference changes over time.
This can be framed as a Bernoulli non-stationary bandit
setting with a set of two actions A = {a0, a1}, and a time-
dependent policy πt : A → [0, 1], where πt(a0) = βt and
πt(a1) = 1− βt, 0 ≤ βt ≤ 1. The rewards of each action,
denoted as Rt, switch (i.e., Rt(a0) ↔ Rt(a1)) once at an
unpredictable time between 0 and T (see Figure 1 (a)). The
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goal of the system is to maximize the average rewards over a
period T , i.e., maxπ1,...,πT

E
[∑T

t=0Rt(a)
]
. Initially, rec-

ommending x1 yields a higher reward (R0(a1) = 1). How-
ever, the system anticipates a shift in user preference towards
x0 by the end of period T . The system should optimize its
policy πt during the interval from 0 to T , facing aleatoric
uncertainty about when the user preferences will change.
A conservative policy increases the preference weight βt
associated with x0 too quickly (Figure 1 (b)), while a pes-
simistic approach may adjust too slowly (Figure 1 (c)). The
key challenge is to determine the optimal tempo of policy
adjustment in anticipation of this unknown preference shift.

Based on the previous example, this paper challenges the be-
lief that continually updating the decision always achieves
an optimal bound of dynamic regret, a measurement of
decision optimality in a time-varying environment. Our
main contribution, Algorithm 1 and Theorem 5.8, demon-
strates that strategically pausing decision updates provides
a sharper upper bound on the dynamic regret by deriving
an optimal ratio between the policy update duration and the
pause duration.

To achieve this, we formulate the online interactive learn-
ing problem in Section 3 by determining three key aspects:
1) the frequency of policy updates, 2) the timing of policy
updates, and 3) the extent of each update. First, we study
the real-time inference mechanism by proposing a forecast-
ing online reinforcement learning model-free framework in
Section 4. In Section 5, we calculate an upper bound on
the dynamic regret (Theorem 5.3) as a function of episodic
and predictive uncertainties (Propositions 4.1 and 4.2), as
well as aleatoric uncertainty (Proposition 5.6 and Lemma
5.7). This is achieved by separating it into the policy update
phase (Lemma 5.1) and the policy hold phase (Lemma 5.2).
In Subsection 5.3, we conduct numerical experiments to
show how the optimal ratio minimizing the dynamic regret’s
upper bound (Theorem 5.8) varies with hyperparameters
related to aleatoric uncertainty, highlighting the significance
of the policy hold phase in this minimization. Finally, in
Section 6, we empirically show two findings from three non-
stationary environments: 1) the higher average reward of the
forecasting method compared to the reactive method (Sub-
section 6.2), and 2) the non-positive correlation relationship
between update ratios and average returns (Subsection 6.3).

Notations

The sets of natural, real, and non-negative real numbers
are denoted by N, R, and R+, respectively. For a finite
set Z, the notation |Z| represents its cardinality, and ∆(Z)
denotes the probability simplex over Z. Given X,Y ∈ N
with X < Y , we define [X] := {1, 2, . . . , X}, the closed
interval [X,Y ] := {X,X + 1, . . . , Y }, and the half-open
interval [X,Y ) := {X,X+1, . . . , Y −1}. For x ∈ R+, the

floor function ⌊x⌋ is defined as max{n ∈ N∪{0} | n ≤ x}.
For any functions f, g : Rm → R satisfying f(x) ≤ g(x)
for all values of x, if x∗g = argminx∈Rm g(x), then x∗g is
referred to as a surrogate optimal solution of f(x). We use
the term surrogate optimal solution and suboptimal solution
interchangeably.

2. Related works
Real-time inference RL

One approach to real-time reinforcement learning is to adapt
existing algorithms and validate their feasibility for real-
time operation (Adam et al., 2012). Alternatively, some
algorithms are specifically designed with the primary objec-
tive of functioning in real-time contexts (Cai et al., 2017;
Wang & Yuan, 2015). A recent and distinct perspective
on real-time inference was presented in (Ramstedt & Pal,
2019), which proposed the real-time markov reward process.
In this process, the state evolves concurrently with the action
selection. The anytime inference approach (Vlasselaer et al.,
2015; Spirtes, 2001) encompasses a set of algorithms capa-
ble of returning a valid solution at any interruption point,
with their performance improving over time.

Nonstationary RL

The problem formulation of this paper draws inspiration
from “desynchronized-time environment”, initially pro-
posed by (Lee et al., 2023). The desynchronized-time en-
vironment assigns the real-time duration of the learning
process, where the agent is responsible for deciding both
the timing and the duration of its interactions. (Finn et al.,
2019) introduced the Follow-The-Meta-Leader algorithm to
improve parameter initialization in a non-stationary environ-
ment, but it cannot efficiently handle delays in optimal pol-
icy tracking. To address this, (Chandak et al., 2020b;a) de-
veloped methods for forecasting policy evaluation, yet faced
limitations in empirical analysis and theoretical bounds for
policy performance. (Mao et al., 2021) proposed an adaptive
Q-learning approach with a restart strategy, establishing a
near-optimal dynamic regret bound.

3. Problem Statement
Time-elapsing Markov Decision Process (Lee et al., 2023).
For a given time t ∈ [0, T ], we define the Markov Decision
Process (MDP) at time t as Mt := ⟨S,A, Pt, Rt, γ,H⟩.
S is a state space, A is an action space, Pt : S × A ×
S → ∆(S) is a transition probability at time t, and Rt :
S × A → R is a reward function at time t. For every
time t, the agent interacts with the environment via a policy
πt : S × A → ∆(S) where each episode takes H steps to
complete. We assume that a trajectory is finished within
a second, implying that the agent will finish its trajectory
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within a temporally fixed MDPMt.

Time elapsing variation budget. In the real world, the
time of the environment flows independently from t = 0
to t = T regardless of the agent’s behavior. For any time
instances t1, t2 ∈ [0, T ) such that t1 < t2, we define local
variation budgets Br(t1, t2) and Bp(t1, t2) as

Br(t1, t2) :=

t2−1∑
t=t1

max
s,a
|Rt+1(s, a)−Rt(s, a)| ,

Bp(t1, t2) :=

t2−1∑
t=t1

max
s,a
||Pt+1(· | s, a)− Pt(· | s, a)||1 .

Also, we define cumulative variation budgets B̄p(t1, t2)
and B̄r(t1, t2) as the summation of local variation budgets
between time t1 and t2, i.e,

B̄r(t1, t2) :=

t2−1∑
t=t1

Br(t1, t), B̄p(t1, t2) :=

t2−1∑
t=t1

Bp(t1, t).

To align with real-world scenarios where environmental
changes do not normally occur too abruptly, we propose
that these changes follow an exponential growth.

Assumption 3.1 (Exponential order local variation bud-
get). For any time interval [t1, t2] ⊂ [0, T ), there exist con-
stants kr, kp > 1, Bmax

p , Bmax
r > 0 such that Bp(t1, t) ≤

Bmax
p kt−t1p , Br(t1, t) ≤ Bmax

r kt−t1r hold for ∀t ∈ [t1, t2] .

Building on Assumption 3.1, we will derive cumulative
variation budgets that also adhere to an exponential order.

Corollary 3.2 (Exponential order cumulative variation bud-
get). For arbitrary time instances t1, t2 ∈ [0, T ) satisfy-
ing t1 < t2, there exist constants αr, αp > 1 such that
B̄p(t1, t2) ≤ Bmax

p αt2−t1p , B̄r(t1, t2) ≤ Bmax
r αt2−t1r hold.

Next, we define stationary and non-stationary environments
in context of variation budget.

Definition 3.3 (Stationary environment). For arbitrary time
instances t1, t2 ∈ [0, T ], ifBr(t1, t2) = 0 andBp(t1, t2) =
0 are satisfied, then we call the corresponding environment
a stationary environment.

Definition 3.4 (Non-stationary environment). If there exist
t1, t2 ∈ [0, T ] such that Br(t1, t2) > 0 or Bp(t1, t2) >
0, then we call the corresponding environment a non-
stationary environment.

State value function, State action value function. For any
policy π, we define the state value function V πt : S → R
and the state action value function Qπt : S × A →
R at time t as V πt (s) := EMt

[∑H−1
h=0 γ

hrt,h | s0t = s
]

and Qπt (s, a) := EMt

[∑H−1
h=0 γ

hrt,h | s0t = s, a0t = a
]
,

where rt,h := Rt(s
h
t , a

h
t ). We define the optimal policy

at time t as π∗
t = argmaxπ V

π
t .

Dynamic regret. During the interval [0, T ], the agent op-
erates according to a sequence of policies π1, π2, . . . , πT .
Drawing from the learning procedure outlined previously,
we define the time-varying dynamic regret R(T ) :=∑T

t=1 (V
∗
t − V

πt
t ), where V ∗

t represents the optimal pol-
icy value at time t and V πt

t is the value function obtained
by executing policy πt in the MDPMt.

Parallel process of policy learning and data collection.
In our formalization of a real-world learning environment,
the policy learning phase and the data collection phase (in-
teraction) occur concurrently. In this context, the number
of trajectories an agent can execute between the unit times
(t, t+ 1),∀t ∈ [T − 1], typically depends on the system’s
control frequency or its hardware capabilities. However,
for the purposes of our analysis, we assume that the agent
executes one trajectory per unit time. This means that at
time t, the agent has rolled out a total of t trajectories.

Before the first episode, the agent determines several key
parameters:

1. Frequency of Policy Updates: The agent decides on
the number of updates, denoted as M ∈ N times.

2. Timing of Policy Updates: The update times are set
as a sequence {t1, t2, t3, . . . , tM} within [0, T ].

3. Extent of Each Update: The policy update iteration
sequence is defined as {G1, G2, . . . , GM}.

Specifically, at each time tm ∈ [0, T ] where m ∈ [M ], the
agent updates its policy for Gm ∈ N ∪ {0} iterations, using
all previously collected trajectories. We assume that each
policy iteration corresponds to one second in real-time. The
policy then remains fixed for Nm ∈ N ∪ {0} seconds after
the updates, where it is determined as Nm = tm+1 − (tm +
Gm). The next episode starts immediately at time tm+1 =
tm + Gm + Nm. Without loss of generality, we assume
that t1 = 0, and therefore tm =

∑m−1
i=1 (Ni + Gi) holds.

Also, we define the mth policy update interval as Gm :=
[tm, tm +Gm) and the mth policy hold interval as Nm :=
[tm + Gm, tm+1). For simplicity of notation, we denote
B̄r(tm, tm+Gm), B̄r(tm+Gm, tm+1), B̄p(tm, tm+Gm)
and B̄p(tm + Gm, tm+1) as B̄r(Gm), B̄r(Nm), B̄p(Gm)
and B̄p(Nm), respectively.

How to determine {π1, π2, ..., πT }. At time tm, the
agent executes the policy πtm and starts optimizing the
policy for Gm seconds. During this optimization, after g
iterations (seconds), where g ∈ [Gm], the agent executes
the most recently updated policy πgtm . This updated policy
represents the gth iteration of optimization from the initial
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policy πtm . Therefore, during the policy update interval Gm,
specifically at time tm + g, the policy πtm+g is equivalent
to πgtm . Subsequently, throughout the policy hold interval
Nm, the agent continues to execute the latest updated policy,
denoted as πt = πGm

tm for every t within Nm.

Figure 2. Parallel process of policy learning and data collection.

Example. Figure 2 illustrates our problem setting. For
a given time duration between t = 0 and t = 30, sup-
pose that the agent has chosen a frequency of policy up-
dates as M = 3 and an update time sequence as t1 =
0, t2 = 13, t3 = 25, along with policy update durations
G1 = 10, G2 = 4, G3 = 5. The agent begins the first
episode at t = 0 with a random policy π0. Subsequently,
during times t = 1, 2, . . . , 10, the agent executes con-
tinuously updating policies π1

0 , π
2
0 , . . . , π

10
0 , respectively,

and then employs the latest updated policy π10
0 at times

t = 11, 12, 13. Following this, the agent operates with poli-
cies π1

13, π
2
13, . . . , π

4
13 during the period t = 14, 15, 16, 17,

where π13 = π10
0 . Lastly, it executes with the most recently

updated policy π4
13 during the time t = 18, . . . , 25.

4. Method
To implement a real-time inference mechanism, particularly
emphasizing the prediction-based control: “predicting the
future in the past”. We introduce a model-free proactive al-
gorithm, detailed in Algorithm 1. This approach is based on
the proactive evaluation of policies. At policy update time
tm, our proposed algorithm forecasts the future Q value of
time tm+1 based on previous trajectories and then optimizes
the future policy for duration Gm based on foreacasted future
Q value. For all t ∈ [0, T ], we denote the estimated value of
Q based on the past trajectories as Q̂t and the optimal value
of Q as Q∗

t . We also denote the future Q value of time tm+1

which was forcasted at time tm as Q̃tm+1|tm . During the
time duration Gm, we determine the policies {πgtm}

Gm
g=1 by

utilizing the Natural Policy Gradient (Kakade, 2001) with
the entropy regularization method based on Q̃tm+1|tm as
follows:

πg+1
tm (·|s) ∝

(
πgtm(·|s)

)1− ητ
1−γ exp

(
ηQ̃tm+1|tm

1− γ

)
s.t. ||Q̃tm+1|tm −Q

∗
tm+1
||∞ = δfm

where η is a learning rate, τ is an entropy regularization
parameter and δfm is the maximum forecasting error at time
step tm.

There are various methods to forecast Qtm+1|tm based on
past Q estimates {Q̂t}tmt=0. In this work, we provide an-
alytical explanations on how the forecasting error can be
bounded by the past l uncertainties (Q estimation errors)
and the intrinsic uncertainty of the future environment (local
variation budgets). For any t, we refer to ϵt as the maximum
Q estimation error if ||Q̂t −Q∗

t ||∞ ≤ ϵt holds. To simplify
the presentation, we drop the term “maximum” when it is
clear from the context.

Proposition 4.1 (Linear forecasting method with bounded
l2 norm). Consider a past reference length lp ∈ N and
define w := [wtm−lp+1, . . . , wtm−1, wtm ]⊤. We forecast
Q̃tm+1|tm as a linear combination of the past lp-estimated
Q values, namely Q̃tm+1|tm =

∑tm
t=tm−lp+1 wtQ̂t, where

the condition ∥w∥2 ≤ L holds for some L. Then, δm can
be bounded by

δfm ≤ L

√√√√ tm∑
t=tm−lp+1

2 (max(ut, ϵt))
2
+ lp(L+ 1)

(
1− γH

1− γ
rmax

)
where ut := 1−γH

1−γ

(
Br(t, tm+1) +

rmax

1−γ Bp(t, tm+1)
)

and rmax := maxt,s,a |Rt(s, a)|

Proposition 4.1 shows that utilizing a low-complexity fore-
casting model provides that the mth maximum forecasting
error is bounded by intrinsic environment uncertainty of fu-
ture {ut}tmt=tm−lp−1 and past uncertainties {ϵt}tmt=tm−lp−1

due to finite samples.

Compared to previous studies on finite-time Q value conver-
gence with asynchronous updates (Qu & Wierman, 2020;
Even-Dar & Mansour, 2004), our work primarily focuses on
how strategic policy update intervals affect an upper bound
on the dynamic regret, leaving room for future exploration
of Q convergence rate improvement. This will be discussed
in more detail in Section 5.

In the remainder of this section, we investigate in Propo-
sition 4.2 and Corollary 4.3 how an ϵt-accurate estimate
of past Q value establishes a lower bound condition on
{Ni}m−1

i=1 and {Gi}m−1
i=1 .

Proposition 4.2 (Past uncertainty with sample complexity
(Qu & Wierman, 2020)). For any κ > 0 and under some
conditions on stepsizes, if t ≥ (|S||A|)3.3

(1−γ)5.2ϵ2.6t
, then ||Q̂t −

Q∗
t ||∞ ≤ ϵt holds.

Proposition 4.2 highlights that the lower bound conditions
of {Ni}m−1

i=1 and {Gi}m−1
i=1 are useful to reach ϵt-accurate

estimate of Q value for asynchronous Q-learning method
on a single trajectory. The upper bound of δfm could be
better minimized by taking max(ut, ϵt) = ut for all t ∈
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Algorithm 1 Forecasting Online Reinforcement Learning
1: Input: Total time T , Policy update duration sets
{H1, ..,HM}, {G}1:K , Dataset D

2: Init: m = 0, π1 = random policy
3: for t = {1, 2, ..., T} do
4: Rollout H steps trajectory with policy πt and save a

trajectory to D
5: if t ∈ {t1, t2, ..., tM} then
6: m← m+ 1
7: Q̃tm+1|tm = ForQ(D) /* Forecast future Q */
8: end if
9: if t ∈ [tm +Gm) then

10: πt+1 = Update(πt, η, τ, γ, Q̃tm+1|tm) /* Update
Policy */

11: else if t ∈ [tm +Gm +Nm) then
12: πt+1 = πt /* Pause policy update*/
13: end if
14: end for

[tm − l + 1, tm]. This requires t ≥ (|S||A|)3.3
(1−γ)5.2u2.6

t
to hold for

all t ∈ [tm − l + 1, tm]. Note that tm =
∑m−1
i=1 (Ni +Gi)

holds. Therefore, for j = 1, 2, ..., lp, we have
∑m−1
i=1 (Ni +

Gi)− j+1 ≥ (|S||A|)3.3
(1−γ)5.2u2.6

tm−j+1
. Then, the upper bound can

be simplified without past uncertainty terms as follows.

Corollary 4.3 (Maximum forecasting error bound). For j =
1, 2, ..., lp, if {Ni}m−1

i=1 and {Gi}m−1
i=1 satisfy the condition∑m−1

i=1 (Ni + Gi) − j + 1 ≥ (|S||A|)3.3
(1−γ)5.2u2.6

tm−j+1
, then δf is

bounded by

δf ≤ Lumax
√
2lp + lp(L+ 1)

(
1− γH

1− γ
rmax

)
.

where δf := maxm∈[M ] δ
f
m is a maximum forecasting error

and umax := maxm∈[M ] utm−lp+1.

Corollary 4.3 shows how the forecasting error δf is bounded
with future environment’s uncertainty umax with lower
bound conditions on {Ni}m−1

i=1 and {Gi}m−1
i=1 . By collect-

ing more trajectories per the unit time (t, t + 1), we can
significantly relax the lower bound condition, going beyond
our initial assumption (see Section 3).

5. Theoretical Analysis
In this section, we provide a dynamic regret analysis to
investigate how policy hold durations {N1, N2, . . . , NM}
influence the minimization of dynamic regret. We initially
decompose the regret into two main components and calcu-
late the upper bounds of these components in Subsection
5.1. Subsequently, in Subsection 5.2, we further divide the
overall upper bound of regret into three distinct terms and
investigate how Nm modulates each of these terms, except

for the future forecasting regret term. Finally, in Subsec-
tion 5.3, we present numerical experiments that demonstrate
variations in the regret upper bound in response to different
Nm values under different aleatoric uncertainties.

5.1. Regret analysis

We define the dynamic regret between times tm and
tm+1 as Rm(T ), which is given by Rm(T ) :=∑tm+1

t=tm
(V ∗
t − V

πt
t ) . The mth dynamic regret, Rm(T ), can

be decomposed into the following two components, Policy
update regret and Policy hold regret as follows:

R(T ) =

M∑
m=1

( ∑
t∈Gm

(V ∗
t − V

πt
t )︸ ︷︷ ︸

Policy update regret

+
∑
t∈Nm

(V ∗
t − V

πt
t )︸ ︷︷ ︸

Policy hold regret

)
.

The policy update regret and the policy hold regret will be
studied next.

Lemma 5.1 (Policy update regret). Let B̄(Gm) :=
C4B̄r(Gm) + C5B̄p(Gm). For all t ∈ Gm where m ∈ [M ],
it holds that

∑
t∈Gm

(V ∗
t − V

πt
t ) ≤ C1

ητ
·
(
1− (1− ητ)Gm

)
+Gm

(
C2δ

f
m + C3

)
+ B̄(Gm)

where C1 = (γ + 2)
(
||Q∗

tm − Qtm ||∞ + 2τ(1 − ητ
1−γ

|| log π∗
tm − log πtm ||∞)

)
, C2 = 2(γ+2)

1−γ

(
1 + γ

ητ

)
, C3 =

2τ log |A|
1−γ , C4 = 2(1−γH)

1−γ , C5 = γ
1−γ ·

(
1−γH

1−γ − γ
H−1H

)
+

1−γH

1−γ ·
rmax

1−γ .

Lemma 5.2 (Policy hold regret). Let B̄(Nm) :=
C4B̄r(Nm)+C5B̄p(Nm). For all t ∈ Nm wherem ∈ [M ],
it holds that

∑
t∈Nm

(V ∗
t − V

πt
t ) ≤ Nm ·

(
C1(1− ητ)Gm

+ C2δ
f
m + C3

)
+ B̄(Nm)

where C1, C2, C3, C4, C5 are the constants defined in
Lemma 5.1.

By leveraging Lemmas 5.1 and 5.2, the dynamic regret
R(T ) will be bounded below.

Theorem 5.3 (Dynamic regret). Let B̄(tm, tm+1) :=
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B̄(Nm) + B̄(Gm). Then, it holds that

R(T ) ≤
M∑
m=1

(
C1

ητ
+

(
NmC1 −

C1

ητ

)
(1− ητ)Gm︸ ︷︷ ︸

policy optimization regret(Rπ
m)

+ (Nm +Gm)(C2δ
f
m + C3)︸ ︷︷ ︸

Q function forecasting regret(Rf
m)

+ B̄(tm, tm+1)︸ ︷︷ ︸
non-stationarity regret(Renv

m )

)
.

In Theorem 5.3, we articulate the decomposition of Rm(T )
into three terms: the policy optimization regret, denoted as
Rπ
m, Q value forecasting regret, denoted as Rf

m, and non-
stationarity regret, denoted by Renv

m . Now, by extending the
upper bound of the forecasting error regret to

∑M
m=1 R

f
m ≤∑M

m=1(Nm + Gm)(C2δf + C3) = T (C2δf + C3) ≤
T
(
C2

(
Lumax

√
2lp + lp(L+ 1)

(
1−γH

1−γ rmax

))
+ C3

)
,

we find that its upper bound is independent from
{Ni, Gi}mi=1, and satisfies a sublinear convergence rate to
the total time T for any lp = (1/T )α, α > 0.

Expanding on the independence of {Ni, Gi}mi=1 from the
upper bound of

∑M
m=1 R

f
m, we will show howNm balances

between Rπ
m and Renv

m , followed by minimizing the upper
bound of Rm(T ) in the next subsection.

5.2. Theoretical insight

One crucial theoretical insight to be deduced from The-
orem 5.3 is which nonzero value of Nm strikes a bal-
ance between Rπ

m and Renv
m . Our insights begin with

the analysis of Rm(T ). We start by considering a fixed
time interval [tm, tm+1], which brings up the constraint
Nm +Gm = tm+1 − tm. The initial aspect of our investi-
gation addresses whether a nonzero value of Nm offers any
advantage in a stationary environment.

Lemma 5.4 (Optimal N∗
m, G

∗
m for Rπ

m). Given fixed time
interval [tm, tm+1], the optimal values N∗

m and G∗
m that

minimize Rπ
m are determined as N∗

m = 0 and G∗
m =

tm+1 − tm, respectively.

Since Renv
m = 0 is satisfied in stationary environments (see

Definition 3.3), Corollary 5.5 ensues from Lemma 5.4.

Corollary 5.5 (Optimal N∗
m, G

∗
m in Stationary Environ-

ments). Consider a stationary environment. The upper
bound of the Rm is achieved at its minimum when Nm = 0
and Gm = tm+1 − tm, respectively.

What Corollary 5.5 states is intuitively straightforward. This
is because in scenarios where the time sequence of the pol-
icy update (t1, t2, . . . , tm) is fixed, maximizing the policy
update duration is advantageous without considering fore-
casting errors. However, we claim that Nm plays an impor-
tant role in a non-stationary environment, i.e., positive N∗

m

(a) (b)

Figure 3. Optimal solutions for minGm,Nm B̄(tm, tm+1) are
(G∗

m, N∗
m) = (4, 2), (2, 4) (a) Gm = 4, Nm = 2 (b) Gm =

6, Nm = 0

minimizes the upper bound of Rm(T ). We first develop the
following proposition.

Proposition 5.6 (Existence of Positive N∗
m for Renv

m ). In
a non-stationary environment, consider any given time in-
terval [tm, tm+1] satisfying tm+1 − tm ≥ 2. Under these
conditions, there exists a number Nm within the open inter-
val (0, tm+1 − tm) that minimizes B̄(tm, tm+1).

One way to intuitively understand Proposition 5.6 is ex-
emplified in Figure 3. Consider a non-stationary envi-
ronment where the reward abruptly changes only at state
s0 and action a0. Suppose that C4 = C5 = 1. Then
min B̄(tm, tm+1) = 1 and its solution is attainable at
(G∗

m, N
∗
m) = (4, 2) and (2, 4) (Figure 3 (a)), while in the

case where Gm = 6, Nm = 0 yields B̄(tm, tm+1) = 3
(Figure 3 (b)). Both subfigures optimize the policy toward
the forecasted future Q value of time tm+1, but the time
that the agent stops to update the policy (t = tm + Gm)
determines how much the agent would be conservative with
respect to the future reward prediction.

Based on Proposition 5.6, we introduce the sur-
rogate optimal solution (G∗

m, N
∗
m) for the non-

stationarity regret Renv
m . According to Corol-

lary 3.2, it holds that B̄r(Nm) is bounded by∑t=tm+Gm+Nm−1
t=tm+Gm

α
t−(tm+Gm)
r Bmax

r (Nm), and similarly,
B̄r(Gm) is bounded by

∑t=tm+Gm−1
t=tm

αt−tmr Bmax
r (Gm).

For brevity, we use the notation α⋄,1 = α⋄(Gm) and
α⋄,2 = α⋄(Nm), and similarly for Bmax

⋄,1 = Bmax
⋄ (Gm) and

Bmax
⋄,2 = Bmax

⋄ (Nm), where ⋄ is either r or p. Furthermore,
we define α□ as the max

(
αr,□, αp,□

)
, and Bmax

□ as the

max
(
Bmax
r,□ , B

max
p,□

)
, where □ is either 1 or 2.

Lemma 5.7 (Surrogate optimal (G∗
m, N

∗
m) for Renv

m ). For
given m, tm, tm+1, the surrogate optimal policy update and
policy hold variables that minimize the upper bound of Renv

m

are

N∗
m = argmin

Nm∈{⌊Ñ∗
m⌋,⌊Ñ∗

m⌋+1}
Renv
m (Nm, Gm)

and
G∗
m = tm+1 − tm −N∗

m,

6
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Figure 4. Renv
m upper bound with different environmental hyper-

parameters. ♦ denotes the minimum of each function graph.
(a) α1/α2 ∈ {0.98, 0.99, 1.0, 1.01, 1.02}. (b) Bmax

1 /Bmax
2 ∈

{0.94, 0.97, 1.0, 1.03, 1.06}.

0 5 10 15 20
Nm

0

200

400

en
v

m
+

m

N *
m with different Cm ratios
0
0.86
0.92
0.95

(a)

0 5 10 15 20
Nm

130

140

150

en
v

m
+

m

N *
m with different learning rates

0.01
0.1
0.4
0.7
0.99

(b)

Figure 5. Renv
m + Rπ

m upper bound with different CR ratios
and learning rates. ♦ denotes the minimum of each function
graph. (a) CR

m ∈ {0, 0.86, 0.92, 0.95}. (b) Learning rates
∈ {0.01, 0.1, 0.3, 0.7, 0.99}.

where

Ñ∗
m =

1

ln (α2/α1)
·ln
(
lnα1/(α1 − 1)

lnα2/(α2 − 1)
· αtm+1−tm

1 · B
max
1

Bmax
2

)
.

Note that Lemma 5.7 provides a nonzero suboptimal N∗
m

that minimizes the non-stationary regret Renv
m . Now, we

combine Lemmas 5.4 and 5.7 to find the suboptimal N∗
m

and G∗
m that minimize the upper bound of Rm(T ).

Theorem 5.8 (Surrogate optimal (G∗
m, N

∗
m) for Rm). For

givenm, tm, tm+1, the surrogate optimal policy update vari-
able Nm and surrogate policy hold variable Gm that mini-
mize the upper bound of Rm satisfy the following equation:

C1 ((Nm − 1) ln(1− ητ)− 1) (1− ητ)Gm+

(C4 + C5)

(
lnα1

α1 − 1
Bmax

1 αGm
1 − lnα2

α2 − 1
Bmax

2 αNm
2

)
= 0,

where C1, C4, C5, η, τ, α1, α2, B
max
1 , and Bmax

2 are con-
stants or parameters specific to the system under considera-
tion.

Apart from Lemma 5.7, Theorem 5.8 does not provide a
closed-form solution. Consequently, we will conduct some
numerical experiments to understand how N∗

m and G∗
m

change to the hyperparameters of Theorem 5.8 in the next
subsection.

5.3. Numerical analysis of theoretical insights

Figures 4 and 5 show how the surrogate optimal N∗
m

changes with different parameter choices. Figure 4 shows
how N∗

m changes with different parameters of the envi-
ronment intrinsic uncertainty. Note that (α1, B

max
1 ) and

(α2, B
max
2 ) represent the magnitude (severity) of the intrin-

sic uncertainty of the environment during the policy update
phase (Gm) and the policy hold phase (Nm), respectively.
The two subfigures of Figure 4 not only support the impor-
tance of holding N∗

m, but also show the necessity of keeping
the policy hold phase longer if the uncertainty of the environ-
ment during the policy update phase (α1, B

max
1 ) is greater

than that of the policy hold phase (α2, B
max
2 ). Moreover,

Figure 5 (a) shows that increasing N∗
m provides a better

performance if the environment regret term dominates the
regret Renv

m + Rπ
m. We define the dominant ratio CR

m as
CR
m :=

∫ tm+1

tm
Renv
m /(Renv

m + Rπ
m)dt. Finally, Figure 5

(b) validates that the surrogate optimal solution is still an
acceptable solution and illustrates that the suboptimal gap
resulting from relaxing the non-convex upper bound into a
convex one is tolerable, as a higher learning rate leads to a
fast convergence of Rπ

m and, in turn, intuitively results in a
longer Nm within fixed tm, tm+1.

6. Experiments
In this section, we demonstrate the effectiveness of two key
components of the proposed algorithm, forecasting Q value
(line 7 of Algorithm 1) and the strategic policy update (line
9∼ 12 of Algorithm 1). In Subsection 6.2, we illustrate how
utilizing forecastedQ value yields higher rewards compared
to a reactive method in a finite-dimensional environment.
Subsequently, in Subsection 6.3, we will show how strategi-
cally assigning different policy update frequencies provides
a higher performance than the continually updating pol-
icy method in an infinite-dimensional Mujoco environment,
swimmer and halfcheetah. Details of environments and
experiments are specified in Appendix B.

6.1. Future Q value estimator

For the following experiments in Subsections 6.2 and 6.3,
we design the ForQ function as the least-squares estima-
tor (Chandak et al., 2020b), namely Q̃tm+1|tm(s, a) =

ϕ(tm+1)
⊤w∗(s, a) where ϕ : [0, T ) → Rd is a basis func-

tion for encoding the time index. For example, an identity
basis is ϕ(x) := {x, 1}. Then w∗(s, a) denotes an optimal
solution of the least-squares problem for any s ∈ S, a ∈ A,
namelyw∗(s, a) = argminw∈Rd×1 ||Q(s, a)−Φ(X)⊤w||2
where Q(s, a) := [Qtm−lp+1(s, a), ..., Qtm(s, a)]⊤ ∈
Rlp×1, X := [tm − lp + 1, ..., tm]⊤ ∈ Rlp×1, and
Φ(X) := [ϕ(tm − lp + 1), ..., ϕ(tm)] ∈ Rd×lp . The so-
lution to the above least-squares problem is w∗(s, a) =

7
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Figure 6. (a) Swithcing goal cliffworld. (b) Reward per step. A
red triangle means the goal point switches at step = 10000. A
shaded area denotes one standard deviation among five different
hyperparameter results.
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Figure 7. Halfcheetah environment: blue dots are FSAC and or-
ange dots are SAC. An error bar is 0.5 standard deviation over 36
different hyperparmeter results. (a) Average reward lf = 5. (b)
Average reward lf = 20.

(Φ(X)⊤Φ(X))−1Φ(X)⊤Q(s, a).

6.2. Goal switching cliffworld

We first experiment with a low-dimensional tabular MDP to
verify that evaluating the policy by the forecasting method
yields a better performance than the reactive method. The
environment is the switching goal cliffworld where the agent
always starts in the blue circle and a goal switches between
two green pentagons (Figure 6 (a)). We use the Q-learning
algorithm (Watkins & Dayan, 1992) to evaluate the current
policy and compute future policy with future Q estimator
proposed in Subsection 6.1. Figure 6 (b) illustrates that after
the goal point switches at step = 10000, the reactive method
fails to obtain an optimal policy for the remaining steps. In
contrast, the forecasting Q method successfully identifies
an optimal policy shortly after step = 15000.

6.3. Mujoco environment

To verify our findings in a large-scale environment, we pro-
pose a practical deep learning algorithm, Forecasting Soft-
Actor Critic (FSAC), that specifies Algorithm 1. The FSAC
algorithm is detailed in Algorithm 3 (see Appendix A). Then,
we conduct experiments in high-dimensional non-stationary
Mujoco environments (Todorov et al., 2012), swimmer, and
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Figure 8. Swimmer environment: blue dots are FSAC and orange
dots are SAC. An error bar is 0.5 standard deviation over 36 differ-
ent hyperparmeter results. (a) Average reward lf = 5. (b) Average
reward lf = 15.

halfcheetah where the reward changes as the episode goes
by (Feng et al., 2022). We utilize the Soft-Actor Critic
(SAC) algorithm (Haarnoja et al., 2018) as a baseline.

In particular, the distinctions between the FSAC and the
SAC are the lines 2, 9 ∼ 11, and 16 ∼ 18 of Algorithm
3. In FSAC, the prediction length lf ∈ N and the update
frequency γf ∈ (0, 1] are set as hyperparameters, with
tm = lfm for allm ∈ [M ] (line 2). The algorithm forecasts
futureQ values at every lf iteration (lines 9 ∼ 11), updating
the policy during the interval (tm, tm+⌊lfγf⌋] and keeping
it between (tm + ⌊lfγf⌋, tm+1] (lines 16 ∼ 18).

Figures 7 and 8 depict the results. In most cases, the FSAC
algorithm (indicated by blue dots) yields a higher average
return compared to the SAC algorithm (indicated by orange
dots). These practical experiments aim to emphasize that
γf = 1.0 does not necessarily lead to the best average
reward. This observation aligns with our theoretical analysis
presented in Section 5.2, where we demonstrate that a non-
negative N∗

m minimizes the upper bound of dynamic regret.
We will elaborate on training and result details in Appendix
B.2.

7. Conclusion
This paper introduces a forecasting online reinforcement
learning framework, demonstrating that non-zero policy
hold durations improve dynamic regret’s upper bound. Em-
pirical results show the forecasting method’s advantage over
reactive approaches and indicate that continuous policy up-
dates do not always maximize average rewards. For future
work, it is crucial to explore methods to minimize the fore-
casting error to achieve a sharper upper bound. This paper
presents work whose goal is implementing real-time control
with prediction in environments with unknown uncertainties.
A significant societal impact of our research is the narrowing
of the gap between simulation-based RL and its real-world
applications, along with demonstrating the advantages of
pausing model learning in continual learning settings.
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A. Algorithms

Algorithm 2 Update: Update policy π

1: Input: policy π, learning rate η, entropy regularization constant τ , discount factor γ, policy evaluation Q̂
2: Z(s) =

∑
a∈A (π(a|s))1−

ητ
1−γ exp

(
ηQ̂(s, a)/(1− γ)

)
3: π′(·|s) = 1

Z(s) · (π(·|s))
1− ητ

1−γ exp
(
ηQ̂(s,·)
1−γ

)
4: Return π′

Algorithm 3 Forecasting Soft Actor-Critic
1: Initialize parameter vectors ψ, ψ̄, θ, ϕ.
2: Set prediction length lf , update frequency γf
3: for each iteration do
4: for each environment step do
5: Sample action at ∼ πθ(at|st).
6: Sample next state st+1 ∼ p(st+1|st, at).
7: D ← D ∪ {(st, at, r(st, at), st+1)}.
8: end for
9: if iteration % lf = 0 then

10: Q̃ = ForQ(D).
11: end if
12: for each gradient step do
13: ψ ← ψ − λψ∇ψJV (ψ).
14: θi ← θi − λQ∇θiJQ(θi) for i ∈ {1, 2}.
15: ψ̄ ← τsψ + (1− τs)ψ̄.
16: if iteration % lf ≤ lfγf then
17: ϕ← ϕ− λπ∇ϕJ̃π(ϕ).
18: end if
19: end for
20: end for

B. Experiments
B.1. Environments and experiments details

Goal switching cliffword

The environment is 12× 3 tabular MDP where (0, 2) is a fixed initial state (blue point), and the possible goal points are
(11, 0) and (11, 2) (for the x, y axis, see Figure 6 (a)). The agent executes 4 actions (up, left, right, down). If the agent
reaches the restart states ((1, 2), (2, 2), ..., (10, 2) and (1, 0), (2, 0), ..., (10, 0)), denoted by yellow points, then the agent
goes back to the initial state with a failure reward −100. If the agent reaches the goal point, then it receives the success
reward +100. For taking every step (for every time the agent executes an action), the agent receives a step reward of −100.

For experiments, we use the Q-learning algorithm (Watkins & Dayan, 1992). In Figure 6 (b), we denote “reactive”
label as Q-learning algorithm proposed by (Watkins & Dayan, 1992) and “future Q” label as a method that combines
Q-learning algorithm to evaluate the current policy and use future Q estimator to compute future policy that was proposed
in section 6.1. We set the maximum number of steps as 100. The experiments have been carried out by changing
hyperparameters of Q-learning: step size α and ϵ from the ϵ-greedy method. We have done experiments with different
(α, ϵ) = (0.05, 0.05), (0.1, 0.1), (0.1, 0.05), (0.2, 0.1), (0.2, 0.05), (0.3, 0.1).

Swimmer, Halfcheetah

The Swimmer and Halfcheetah environments share the same reward function at step h as rh = r
(1)
h + r

(2)
h + r

(3)
h . It

comprises a healthy reward (r(1)h ), a forward reward (r(2)h = kf
xh+1−xh

∆tframe
, kf > 0), and a control cost (r(3)h ). We modify

11
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the environment to be non-stationary by the agent’s desired velocity changes as time goes by. Specifically, we modify the
forward reward r(2)h varies as r(2)h = −

∣∣∣kf xh+1−xh

∆tframe
− vd(t)

∣∣∣, with vd(t) = a sin(wt) and t representing the episode. Here,
a,w > 0 are constants.

For our experiments, we varied hyperparameters such as learning rates λπ ∈ {0.0001, 0.0003, 0.0005, 0.0007}, soft update
parameters τs ∈ {0.001, 0.005, 0.003} and the entropy regularization parameters {0.01, 0.03, 0.1} and also experimented
with different prediction lengths lf ∈ {5, 15, 20}. We selected the average reward per episode as the performance metric,
in line with the definition of dynamic regret. For given hyperparameters, we compare the average reward between FSAC
and SAC for different update frequencies γf ∈ {0.1, 0.2, . . . , 1.0}. The experiments were conducted in two different
Mujoco environments: HalfCheetah and Swimmer (see Figures 7 and 8). In Figures 7 and 8, error bars denote 0.5 standard
deviations.

B.2. Results

In this subsection, we have elaborated detailed results of the experiment on Halfcheetah and Swimmer. Note that Fig-
ures 9,11 and 12 are detailed results for Figure 7 of the main paper, and Figures 10,13 and 14 are detailed result for
Figure 8 of the main paper. Figures 9 and 10 show the reward return per episode for different update frequencies
γf ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Figures 11,12,13 and 14 compare the FSAC and SAC reward return
per episode. Note that the plotted lines are mean rewards calculated over 36 different hyperparameters (learning rates
λπ ∈ {0.0001, 0.0003, 0.0005, 0.0007}, soft update parameters τs ∈ {0.001, 0.005, 0.003} and the entropy regularization
parameters {0.01, 0.03, 0.1}).
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Figure 9. Reward per episode in the Halfcheetah environment for various update frequencies γf ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
, 0.8, 0.9, 1.0}. The plotted lines represent the mean reward across 36 different hyperparameters. (a) For lf = 5. (b) For lf = 20.
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Figure 10. Reward per episode in the Swimmer environment for various update frequencies γf ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
, 0.8, 0.9, 1.0}. The plotted lines represent the mean reward across 36 different hyperparameters. (a) For lf = 5. (b) For lf = 15.
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Figure 11. Reward per episode for Halfcheetah environment when lf = 5. The blue lines are FSAC, and the orange lines are SAC. The
shaded areas are 0.5 standard deviations over 36 different hyperparameter results. (a) γf = 0.1. (b) γf = 0.2. (c) γf = 0.3. (d) γf = 0.4.
(e) γf = 0.5. (f) γf = 0.6. (g) γf = 0.7. (h) γf = 0.8. (i) γf = 0.9. (j) γf = 1.0.
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Figure 12. Reward per episode for Halfcheetah environment when lf = 20. The blue lines are FSAC, and the orange lines are SAC.
The shaded areas are 0.5 standard deviations over 36 different hyperparameter results. (a) γf = 0.1. (b) γf = 0.2. (c) γf = 0.3. (d)
γf = 0.4. (e) γf = 0.5. (f) γf = 0.6. (g) γf = 0.7. (h) γf = 0.8. (i) γf = 0.9. (j) γf = 1.0.
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Figure 13. Reward per episode for Swimmer environment when lf = 5. The blue lines are FSAC, and the orange lines are SAC. The
shaded areas are 0.5 standard deviations over 36 different hyperparameter results. (a) γf = 0.1 (b) γf = 0.2 (c) γf = 0.3 (d) γf = 0.4
(e) γf = 0.5 (f) γf = 0.6 (g) γf = 0.7 (h) γf = 0.8 (i) γf = 0.9 (j) γf = 1.0
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Figure 14. Reward per episode for Swimmer environment when lf = 15. The blue lines are FSAC, and the orange lines are SAC. The
shaded areas are 0.5 standard deviations over 36 different hyperparameter results. (a) γf = 0.1 (b) γf = 0.2 (c) γf = 0.3 (d) γf = 0.4
(e) γf = 0.5 (f) γf = 0.6 (g) γf = 0.7 (h) γf = 0.8 (i) γf = 0.9 (j) γf = 1.0
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C. Proofs
Proof of Proposition 4.1.

||Q̃tm+1 −Q∗
tm+1
||∞ =

∣∣∣∣∣∣
∣∣∣∣∣∣

tm∑
t=tm−lp+1

wt

(
Q̂t −Q∗

tm+1

)∣∣∣∣∣∣
∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣
∣∣∣∣∣∣

tm∑
t=tm−lp+1

(wt − 1)Q∗
tm+1

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤
tm∑

t=tm−lp+1

|wt|
(
||Q∗

t −Q∗
tm+1
||∞ + ||Q∗

t − Q̂t||∞
)
+

tm∑
t=tm−lp+1

|wt − 1|
∣∣∣∣∣∣Q∗

tm+1

∣∣∣∣∣∣
∞

≤

√√√√ tm∑
t=tm−lp+1

|wt|2

√√√√ tm∑
t=tm−lp+1

(
||Q∗

t −Q∗
tm+1
||∞ + ||Q∗

t − Q̂t||∞
)2

+

 tm∑
t=tm−lp+1

|wt|+ lp

∣∣∣∣∣∣Q∗
tm+1

∣∣∣∣∣∣
∞

≤ L ·

√√√√ tm∑
t=tm−lp+1

(
||Q∗

t −Q∗
tm+1
||2∞ + 2||Q∗

t −Q∗
tm+1
||∞||Q∗

t − Q̂t||∞||Q∗
t − Q̂t||2∞

)

+

lp
√√√√ tm∑
t=tm−l+1

|wt|2 + lp

(1− γH

1− γ
rmax

)
(1)

We use the lemma D.2 that

||Q∗
t −Q∗

tm+1
||∞ ≤

1− γH

1− γ

(
Br(t, tm+1) +

rmax
1− γ

Bp(t, tm+1)

)
holds and the assumption

||Q∗
t − Q̂t||∞ ≤ ϵt

holds. Then, we finally have the following.∣∣∣∣∣∣Q̃tm+1
−Q∗

tm+1

∣∣∣∣∣∣
∞

≤ L

√√√√ tm∑
t=tm−l+1

[(
1− γH
1− γ

(
Br(t, tm+1) +

rmax
1− γ

Bp(t, tm+1)

))2

+ 2
1− γH
1− γ

(
Br(t, tm+1) +

rmax
1− γ

Bp(t, tm+1)

)
ϵt + ϵ2t

]

+ lp(L+ 1)

(
1− γH

1− γ
rmax

)

or in a simple expression, we let ut := 1−γH

1−γ

(
Br(t, tm+1) +

rmax

1−γ Bp(t, tm+1)
)

. Then inequality 1 can be rewritten in a
simpler form as follows.

∣∣∣∣∣∣Q̃tm+1 −Q∗
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∞
≤ L

√√√√ tm∑
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2
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≤
√
2Llp max
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(
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)
Proof of Proposition 4.2. Refer to Theorem 7 of (Qu & Wierman, 2020).

15



Pausing Model Learning in Real-world Reinforcement Learning

Proof of Lemma 5.1. The policy update term is divided into three terms.

∑
t∈Gm

(V ∗
t − V

πt
t ) =

Gm−1∑
g=0

(
V ∗
tm+g − V

πtm+g

tm+g

)

=

Gm−1∑
g=0

(V ∗
tm+Gm−1 − V

πtm+g

tm+Gm−1

)︸ ︷︷ ︸
(1-I)

+
(
V
πtm+g

tm+Gm−1 − V
πtm+g

tm+g

)︸ ︷︷ ︸
(1-II)

+
(
V ∗
tm+g − V ∗

tm+Gm−1

)︸ ︷︷ ︸
(1-III)


Note that the term (1-I), the term (1-II), and the term (1-III) are upper bounded by the Lemma D.1, Corollary D.3, and
Lemma D.4.

For any g ∈ [0, Gm − 1] and for any s ∈ S,

• V ∗
tm+Gm−1 − V

πtm+g

tm+Gm−1 ≤ (γ + 2)((1− ητ)gC ′) + 2(γ+2)
1−γ

(
1 + γ

ητ

)
· ϵf + 2τ log |A|

1−γ

• V πtm+g

tm+Gm−1(s)−V
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(
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holds where C ′ = ||Q∗
τ −Qtmτ ||∞ + 2τ(1− ητ

1−γ || log π
∗
τ − log πtmτ ||∞)

Now, taking the summation over g = 0, ..., Gm − 1 provides the following
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Proof of Lemma 5.2. The policy hold error can be divided into three terms

∑
t∈Nm

(V ∗
t − V

πt
t ) =

Nm−1∑
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

The terms (2-I), (2-II) and (2-III) can be bounded using Corollary D.3, Lemma D.1 and Lemma D.4. Recall that we have
defined the time interval Nm = [tm +Gm, tm+1) where tm+1 = tm +Gm +Nm.
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Now taking summation over n = 0, 1, ..., Nm − 1 provides the following.∑
t∈Nm

(V ∗
t − V

πt
t )

=Nm ·
(
(γ + 2)((1− ητ)GmC ′) +

2(γ + 2)

1− γ

(
1 +

γ

ητ

)
· ϵf +

2τ log |A|
1− γ

)
+

1− γH

1− γ
·

(
Nm−1∑
n=0

Br(tm +Gm, tm +Gm + n)

)
+

γ

1− γ
·
(
1− γH

1− γ
− γH−1H

)
·

(
Nm−1∑
n=0

Bp(tm +Gm, tm +Gm + n)

)

+
1− γH

1− γ

(
Nm−1∑
n=0

Br(tm +Gm, tm +Gm + n) +
rmax
1− γ

Nm−1∑
n=0

Bp(tm +Gm, tm +Gm + n)

)

≤Nm ·
(
(γ + 2)((1− ητ)GmC ′) +

2(γ + 2)

1− γ

(
1 +

γ

ητ

)
· ϵf +

2τ log |A|
1− γ

)
+

2(1− γH)

1− γ
·
(
B̄r(tm +Gm, tm +Gm +Nm − 1)

)
+

(
γ

1− γ
·
(
1− γH

1− γ
− γH−1H

)
+

1− γH

1− γ
· rmax
1− γ

)
·
(
B̄r(tm +Gm, tm +Gm +Nm − 1)

)
=Nm ·

(
C1(1− ητ)Gm + C2ϵf + C3

)
+ C4B̄r(Nm) + C5B̄p(Nm)

where C1, C2, C3, C4, C5 are the constants that we defined in the Lemma 5.1.

Proof of Theorem 5.3. Note that the following relationship holds for dynamic regret R(T )

R(T ) =

M∑
m=1

( ∑
t∈Gm

(V ∗
t − V

πt
t )︸ ︷︷ ︸

Policy update error

+
∑
t∈Nm

(V ∗
t − V

πt
t )︸ ︷︷ ︸

Policy hold error

)
.

Use Lemma 5.1 to upper bound the policy update error and Lemma 5.2 to upper bound the policy hold error. Then, it holds
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that

R(T ) =

M∑
m=1

( ∑
t∈Gm

(V ∗
t − V

πt
t ) +

∑
t∈Nm

(V ∗
t − V

πt
t )

)

≤
M∑
m=1

(
C1

ητ
·
(
1− (1− ητ)Gm

)
+Gm

(
C2δ

f
m + C3

)
+ C4B̄r(Gm) + C5B̄p(Gm)

+Nm ·
(
C1(1− ητ)Gm + C2δ

f
m + C3

)
+ C4B̄r(Nm) + C5B̄p(Nm)

)
=

M∑
m=1

(
C1

ητ
+

(
NmC1 −

C1

ητ

)
(1− ητ)Gm + (Nm +Gm)(C2δ

f
m + C3) + B̄(tm, tm+1)

)

Proof of Lemma 5.4. Refer to the proof of Theorem 5.8.

Proof of Proposition 5.6. For fixed tm, tm+1, note that B̄(tm, tm+1) is a function of Gm, Nm with a constraint
Gm + Nm = tm+1 − tm. In this proof, we let B̄(tm, tm+1) to be denoted as a function g(Gm, Nm). Recall
that we have defined B̄(tm+1, tm) := B̄(Nm) + B̄(Gm). Now, since g(0, tm+1 − tm) = g(tm+1 − tm, 0) =∑tm+1−1
t=tm

(C4Br(tm, t) + C5Bp(tm, t)), it is sufficient to show the existence of G†
m ∈ (0, tm+1, tm) and N†

m ∈
(0, tm+1, tm) that satisfy g(G†

m, N
†
m) < g(0, tm+1 − tm) = g(tm+1 − tm, 0). By the definition of non-stationary

environment (see Definition 3.4), let t†1, t
†
2 satisfy Br(t

†
1, t

†
2) > 0 or Bp(t

†
1, t

†
2) > 0. Now, letting G†

m = t†2, then we have

Br(tm, G
†
m) > 0 or Bp(tm, G†

m) > 0. Then we could say that
∑tm+G†

m−1
tm

Br(tm, t) +
∑tm+1−1

tm+G†
m
Br(tm + G†

m, t) <∑tm+1−1
tm

Br(tm, t) or
∑tm+G†

m−1
tm

Bp(tm, t)+
∑tm+1−1

tm+G†
m
Bp(tm+G†

m, t) <
∑tm+1−1
tm

Bp(tm, t) hold. Now, by combin-
ing two inequalities with constants C4, C5 > 0 defined in Lemma 5.1, we have the following.

C4B̄r(tm, tm +G†
m) + C4B̄r(tm +G†

m, Tm+1) + C5B̄p(tm, tm +G†
m) + C5B̄p(tm +G†

m, tm+1)

< C4B̄r(tm, tm+1) + C5B̄p(tm, tm+1)

⇔

B̄(tm, tm +G†
m) + B̄(tm +G†

m, tm+1) < B̄(tm, tm+1)

Therefore, G†
m = t†2, N

†
m = tm+1 − tm − t†m satisfies condition g(G†

m, N
†
m) < g(0, tm+1 − tm) = g(tm+1 − tm, 0). This

completes the proof.

Proof of Theorem 5.8. We first show that the policy optimization error is a convex function of Gm (or Nm. Let
f1(Nm, Gm) = C1(1 − (1 − ητ)Gm) + NmC1(1 − ητ)Gm where Nm + Gm = tm+1 − tm is a constant. Note that
∂Nm/∂Gm = −1.

1

C1
· ∂f1
∂Gm

=
{
ln(1− ητ) (Nm − 1)− 1

}
(1− ητ)Gm

and

1

C1
· ∂

2f1
∂G2

m

=
{
(ln(1− ητ))2(Nm − 1)− 2 ln(1− ητ)

}
(1− ητ)Gm

Therefore ∂2f1/∂G2
m > 0 and ∂2f1/∂N2

m > 0 holds for ∀Nm, Gm ≥ 0 where Nm + Gm = tm+1 − tm holds. The
non-stationary terms are bounded as follows.

B̄(Nm) + B̄(Gm) = (C4 + C5)
(
B̄r(Nm) + B̄r(Gm)

)
18
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Note that by Assumption 3.1, B̄r(Nm) ≤
∑t=tm+Gm+Nm−1
t=tm+Gm

α
t−(tm+Gm)
r Bmax(Nm) and B̄r(Gm) ≤∑t=tm+Gm−1

t=tm
αt−tmr Bmax(Gm). For the short notation, we use α⋄(Gm) = α⋄,1, α⋄(Nm) = α⋄,2 and Bmax

⋄ (Gm) =
Bmax

⋄,1 , B
max
⋄ (Nm) = Bmax

⋄,2 where ⋄ = r or p. Also, we let α□ = max(αr,□, αp,□) and Bmax
□ = max(Bmax

r,□ , B
max
p,□) where

□ = 1 or 2. Then the upper bound would be

B̄(Nm) + B̄(Gm) = C4

(
B̄r(Nm) + B̄r(Gm)

)
+ C5

(
B̄p(Nm) + B̄p(Gm)

)
≤ (C4 + C5) ·

(
αGm
1 − 1

α1 − 1
·Bmax

1 +
αNm
2 − 1

α2 − 1
·Bmax

2

)
We denote the upper bound as a function f2(Nm, Gm). Note that if Bmax

1 , Bmax
2 > 0 for a non-stationary environment. Also,

if 0 < α1, α2 < 1, then f2(Nm, Gm) is a concave function with respect to (Nm, Gm) and if α1, α2 > 1, then f2(Nm, Gm)
is a convex function with respect to (Nm, Gm).

D. Supplementary lemmas
Lemma D.1 (NPG Convergence). Assume that we have inexact Q value estimation at time tm+Gm−1, Q̂tm+Gm−1 where
we denoteQtm+Gm−1 as the exact Q value. Now, define the error of estimation as ϵ, that is, ||Qtm+Gm−1−Q̂tm+Gm−1||∞ ≤
ϵf . For any g ∈ [Gm], it holds that

V ∗
tm+Gm−1 − V π

g

tm+Gm−1 ≤ (γ + 2)((1− ητ)g−1C1) +
2(γ + 2)

1− γ

(
1 +

γ

ητ

)
· ϵf +

2τ log |A|
1− γ

where

C1 =
∣∣∣∣∣∣Q∗

τ −Q(0)
τ

∣∣∣∣∣∣
∞

+ 2τ

(
1− nτ

1− γ

) ∣∣∣∣∣∣log π∗
τ − log π(0)

∣∣∣∣∣∣
∞

Proof of Lemma D.1. We omit the underscript t for simplicity of notation, i.e., Vt, Vτ,t, V ∗
t denotes V, Vτ , V ∗, respectively.

For any m ∈ [M ] and any t ∈ Gm,

V ∗(s)− V (s) ≤ ||V ∗(·)− V ∗
τ (·)||∞ + ||V ∗

τ (·)− Vτ (·)||∞ + ||Vτ (·)− V (·)||∞

≤ ||V ∗
τ (·)− Vτ (·)||∞ +

2τ log |A|
1− γ

holds, since for any policy π, ||V πτ − V π||∞ = τ maxs |H(s, π)| ≤ τ log |A|
1−γ holds. Now, note that Vτ is a value function of

a policy πτ that we obtain after updating g iterations.

||V ∗
τ (·)− Vτ (·)||∞ ≤ τ ||log π

∗
τ − log πgτ ||∞ + ||Q∗

τ (·)−Qτ (·)||∞

≤ τ · 2
τ

(
(1− ητ)g−1C1 + C2

)
+ γ

(
(1− ητ)g−1C1 + C2

)
(2)

= (γ + 2)
(
(1− ητ)g−1C1 + C2

)
where

C1 =
∣∣∣∣∣∣Q∗

τ −Q(0)
τ

∣∣∣∣∣∣
∞

+ 2τ

(
1− nτ

1− γ

) ∣∣∣∣∣∣log π∗
τ − log π(0)

∣∣∣∣∣∣
∞
, C2 =

2ϵf
1− γ

(
1 +

γ

ητ

)
. Equation 2 holds by Theorem 2 of (Cen et al., 2022).

Lemma D.2 (Difference between optimal state action value functions of two MDPs). For any two time steps t1, t2 ∈ T , we
denote the optimal Q functions at step h ∈ [H] as Q∗

t1,h
(s, a), Q∗

t2,h
(s, a). Then for any state and action pair s, a ∈ S ×A,

Q∗
t1,h(s, a)−Q

∗
t2,h(s, a) ≤

H−1∑
h′=h

γh
′−hBr(t1, t2) +

rmax

1− γ

H−1∑
h′=h

γh
′−hBp(t1, t2)

holds where Br(t1, t2), Bp(t1, t2) denotes local time-elapsing variation budget between timesteps {t1, t1+1, t1+2, ..., t2}.
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Proof of Lemma D.2. Only for the purpose of the proof of Lemma D.2, we define the state value function V πt,h : S → R
and the state action value function Qπt,h : S ×A → R at step h of time t as

V πt,h(s) := EMt

[
H−1∑
h′=h

γh
′−hrt,h′

∣∣∣∣ s0t = s

]
and

Qπt,h(s, a) := EMt

[
H−1∑
h′=h

γh
′−hrt,h′

∣∣∣∣ s0t = s, a0t = a

]
.

Note that the optimal state value function and the state action value function satisfy the following Bellman equation.

Q∗
t,h(s, a) =

(
Rt,h + γPtV

∗
t,h

)
(s, a), π∗

t = argmax
a∈A

Q∗
t,h(s, a)

The proof depends on backward induction. First, the statement holds when h = H − 1 since∣∣∣∣Q∗
t1,H−1(s, a)−Q∗

t2,H−1(s, a)
∣∣∣∣
∞ = ||rt1,H−1 − rt2,H−1||∞ = ||Rt1 −Rt2 ||∞

holds. Now, we assume that the statement of Lemma D.2 holds when h+ 1. Then, when h,

Q∗
t1,h(s, a)−Q

∗
t2,h(s, a) = (Rt1,h −Rt2,h) (s, a) + γ

∑
s′∈S

(
Pt1(s

′|s, a)V ∗
t1,h+1(s

′)− Pt2(s′|s, a)V ∗
t2,h+1(s

′)

)
≤ Br(t1, t2) + γ

∑
s′∈S

(
Pt1(s

′|s, a)Q∗
t1,h+1(s

′, π∗
t1(s

′))− Pt2(s′|s, a)Q∗
t2,h+1(s

′, π∗
t2(s

′)(s′)

)
Then by the induction hypothesis on h+ 1, the following holds for any s′ ∈ S.

Q∗
t1,h+1(s

′, π∗
t1(s

′)) ≤ Q∗
t2,h+1(s

′, π∗
t1(s

′)) +

H−1∑
h′=h+1

γh
′−(h+1)Br(t1, t2) +

rmax

1− γ

H−1∑
h′=h+1

γh
′−(h+1)Bp(t1, t2)

≤ Q∗
t2,h+1(s

′, π∗
t2(s

′)) +

H−1∑
h′=h+1

γh
′−(h+1)Br(t1, t2) +

rmax

1− γ

H−1∑
h′=h+1

γh
′−(h+1)Bp(t1, t2)

Then we have the following.

Q∗
t1,h(s, a)−Q

∗
t2,h′′(s, a) ≤ Br(t1, t2) + γ

∑
s′∈S

((
Pt1(s

′|s, a)− Pt2(s′|s, a)
)
Q∗
t2,h+1(s

′, π∗
t2(s

′))

)

+

H−1∑
h′=h+1

γh
′−hBr(t1, t2) +

rmax

1− γ

H−1∑
h′=h+1

γh
′−hBp(t1, t2)

≤ γ
∣∣∣∣∣∣(Pt1(s′|s, a)− Pt2(s′|s, a)∣∣∣∣∣∣

1

∣∣∣∣Q∗
t2,h+1(s

′, π∗
t2(s

′))
∣∣∣∣
∞ +

H−1∑
h′=h

γh
′−hBr(t1, t2)

+
rmax

1− γ

H−1∑
h′=h+1

γh
′−hBp(t1, t2)

≤ γBp(t1, t2) ·
rmax
1− γ

+

H−1∑
h′=h

γh
′−hBr(t1, t2) +

rmax

1− γ

H−1∑
h′=h+1

γh
′−hBp(t1, t2)

=

H−1∑
h′=h

γh
′−hBr(t1, t2) +

rmax

1− γ

H−1∑
h′=h

γh
′−hBp(t1, t2)

This completes the proof.
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Corollary D.3 (Difference between optimal state value functions of two MDPs). For any two time t1 < t2 ∈ T , we gap
between two value functions at time t1 and t2 is bounded as

||V ∗
t1(s)− V

∗
t2(s)||∞ ≤

1− γH

1− γ

(
Br(t1, t2) +

rmax
1− γ

Bp(t1, t2)

)

Proof of Corollary D.3. Corollary D.3 comes from Lemma D.2.

Lemma D.4 (Difference between value functions of two MDPs with same policy). For any two time t1, t2 ∈ T , any policy
π, and any state s ∈ S, the gap between two value functions V πt1 and V πt2 is bounded as follows.

V πt1 (s)− V
π
t2 (s) ≤

1− γH

1− γ
·Br(t1, t2) +

γ

1− γ
·
(
1− γH

1− γ
− γH−1H

)
·Bp(t1, t2)

Proof of Lemma D.4. For given initial state s0, we first define the occupancy measure of state and action (s, a) as

ρπt (s, a) :=

H−1∑
h=0

γhP (sh = s, ah = a|Pt, π) .

It is worth noting that P (sh = s, ah = a|Pt, π) = P (sh = s|Pt, π) · π(ah = a|ss = s). Now, note that the value function
can be rewritten using the occupancy measure as

V πt (s) := EMt

[
H−1∑
h=0

γhrt,h | s0t = s

]
= E(s,a)∼ρπt [Rt(s, a)]

Then for any t1, t2 ∈ T , the gap between two value functions are expressed as

V πt1 (s)− V
π
t2 (s) = E(s,a)∼dπt1

[Rt1(s, a)]− E(s,a)∼dπt2
[Rt2(s, a)]

= E(s,a)∼dπt1
[Rt1(s, a)−Rt2(s, a)]− E(s,a)∼dπt1

[Rt2(s, a)] + E(s,a)∼dπt2
[Rt2(s, a)]

≤ 1− γH

1− γ
·max
(s,a)

(|Rt2(s, a)−Rt1(s, a)|) +
(
E(s,a)∼dπt2

[Rt2(s, a)]− E(s,a)∼dπt1
[Rt2(s, a)]

)
=

1− γH

1− γ
·Br(t1, t2) +

(
E(s,a)∼dπt2

[Rt2(s, a)]− E(s,a)∼dπt1
[Rt2(s, a)]

)
(3)

Now, the gap E(s,a)∼dπt2
[Rt2(s, a)]− E(s,a)∼dπt1

[Rt2(s, a)] is upper bounded as follows.

E(s,a)∼dπt2
[Rt2(s, a)]− E(s,a)∼dπt1

[Rt2(s, a)] ≤ ||ρπt2(·, ·)− ρ
π
t1(·, ·)||1 · ||Rt2(·, ·)||∞

= ||ρπt2(·, ·)− ρ
π
t1(·, ·)||1 · rmax. (4)
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Now, the term
∑

(s,a) |ρπt2(s, a)− ρ
π
t1(s, a)| is bounded as follows.

∑
(s,a)

∣∣ρπt2(s, a)− ρπt1(s, a)∣∣ = ∑
(s,a)

∣∣∣∣∣
H−1∑
h=0

(
γh ·

(
P (sh = s|Pt2 , π)− P (sh = s|Pt1 , π)

)
· π(ah = a|sh = s)

)∣∣∣∣∣
=
∑
(s,a)

(
H−1∑
h=0

∣∣γh · (P (sh = s|Pt2 , π)− P (sh = s|Pt1 , π)
)∣∣ · ∣∣π(ah = a|sh = s)

∣∣)

=
∑
s

(
H−1∑
h=0

∣∣γh · (P (sh = s|Pt2 , π)− P (sh = s|Pt1 , π)
)∣∣ ·∑

a∈A

∣∣π(ah = a|sh = s)
∣∣)

=
∑
s∈S

(
H−1∑
h=0

∣∣γh · (P (sh = s|Pt2 , π)− P (sh = s|Pt1 , π)
)∣∣ · 1)

=

H−1∑
h=0

γh ·

(∑
s∈S

∣∣∣(P (sh = s|Pt2 , π)− P (sh = s|Pt1 , π)
)∣∣∣) . (5)

Now, for simplicity of notation, we denote P(sh = s|Pt, π) as Pht (s), Pt(sh = s|sh−1 = s′, ah−1 = a′) as Pht (s|s′, a′),
and π(ah = a|sh = s) as πh(a|s). Then, we have

∑
s∈S

∣∣Pht2(s)− Pht1(s)
∣∣

=
∑
s∈S

∣∣∣∣∣∣
∑
s′,a′

(
Pht2(s|s

′, a′) · πh−1(a′|s′) · Ph−1
t2 (s′)− Pht1(s|s

′, a′) · πh−1(a′|s′) · Ph−1
t1 (s′)

)∣∣∣∣∣∣
≤
∑
s∈S

∑
s′,a′

∣∣∣∣(Pht2(s|s′, a′) · Ph−1
t2 (s′)− Pht1(s|s

′, a′) · Ph−1
t1 (s′)

)
· πh−1(a′|s′)

∣∣∣∣
=
∑
s′,a′

∑
s∈S

∣∣∣∣(Pht2(s|s′, a′) · Ph−1
t2 (s′)− Pht1(s|s

′, a′) · Ph−1
t1 (s′)

)
· πh−1(a′|s′)

∣∣∣∣
≤
∑
s′,a′

∑
s∈S

( ∣∣(Pht2(s|s′, a′)− Pht1(s|s′, a′)) · Ph−1
t2 (s′) · πh−1(a′|s′)

∣∣+ ∣∣(Ph−1
t2 (s′)− Ph−1

t1 (s′)
)
· Pht1(s|s

′, a′) · πh−1(a′|s′)
∣∣ )

≤ max
s′,a′

(
||Pht2(·|s

′, a′)− Pht1(·|s
′, a′)||1

)
·

∑
s′,a′

(
Ph−1
t2 (s′) · πh−1(a′|s′)

)
+

∑
s′,a′

(∣∣Ph−1
t2 (s′)− Ph−1

t1 (s′)
∣∣) · πh−1(a′|s′)

 ·(∑
s∈S

Pht1(s|s
′, a′)

)

= Bp(t1, t2) ·

(∑
s′∈S

Ph−1
t2 (s′) ·

∑
a′∈A

πh−1(a′|s′)

)
+

(∑
s′∈S

∣∣Ph−1
t2 (s′)− Ph−1

t1 (s′)
∣∣ · ∑
a′∈A

πh−1(a′|s′)

)
· 1

= Bp(t1, t2) +
∑
s′∈S

∣∣Ph−1
t2 (s′)− Ph−1

t1 (s′)
∣∣ .

Now, note that
∑
s∈S

∣∣P0
t2(s)− P0

t1(s)
∣∣ = 0 and

∑
s∈S

∣∣P1
t2(s)− P1

t1(s)
∣∣ = Bp(t1, t2) holds. Therefore,

∑
s∈S

∣∣Pht2(s)− Pht1(s)
∣∣ ≤ hBp(t1, t2)
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holds. Then, putting the above inequality in the inequality (5) gives the following.

∑
(s,a)

∣∣ρπt2(s, a)− ρπt1(s, a)∣∣ ≤ H−1∑
h=0

γhhBp(t1, t2)

≤ γ

1− γ
·
(
1− γH

1− γ
− γH−1H

)
·Bp(t1, t2)

Now, plugging in the above inequality into the inequalities (3) and (4) provides the following.

V πt1 (s)− V
π
t2 (s) ≤

1− γH

1− γ
·Br(t1, t2) +

γ

1− γ
·
(
1− γH

1− γ
− γH−1H

)
·Bp(t1, t2)

E. Experiment Platforms and Licenses
E.1. Platforms

All experiments are conducted on 12 Intel Xeon CPU E5-2690 v4 and 2 Tesla V100 GPUs.

E.2. Licenses

We have used the following libraries/ repos for our Python codes:

• Pytorch (BSD 3-Clause “New” or “Revised” License).

• OpenAI Gym (MIT License).

• Numpy (BSD 3-Clause “New” or “Revised” License).

• Official codes distributed from https://github.com/pranz24/pytorch-soft-actor-critic: to compare the performance of
SAC and FSAC in the Mujoco environment.

• Official codes distributed from the https://github.com/linesd/tabular-methods: to compare SAC and FSAC in the
goal-switching cliff world.
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