
IEOR 262B LECTURE NOTE

SPRING 2024

Instructor: Javad Lavaei

Hyunin Lee

Ph.D. student

UC Berkeley

hyunin@berkeley.edu

1

Copyright Notice

This document is a lecture note subscribed by Hyunin Lee, based on the IEOR 262B

lectures given by Javad Lavaei. These notes are derived from the content presented and

owned by Javad Lavaei.

Permission Notice

Reproduction, distribution, and transmission of any material in this document are strictly

prohibited without the prior written permission of both Hyunin Lee and Javad Lavaei.

Contact lavaei(at)berkeley(dot)edu or hyunin(at)berkeley(dot)edu for the permis-

sion.

2

https://hyunin-lee.github.io/
https://lavaei.ieor.berkeley.edu/
https://hyunin-lee.github.io/
https://lavaei.ieor.berkeley.edu/
lavaei (at) berkeley (dot) edu
hyunin (at) berkeley (dot) edu

Contents

1 Lecture 1 6

2 Lecture 2 6

2.1 Properties of local minimum x∗ . 6

2.1.1 First-order necessary condition . 6

2.1.2 Second-order necessary condition . 6

2.1.3 Second-order sufficient condition . 7

2.2 Update rule . 7

2.2.1 Descent direction . 8

2.2.2 Steepest descent . 8

2.3 Stepsize . 8

2.3.1 Exact line search . 9

3 Lecture 3 9

3.1 Armijo rule . 9

3.2 Constant stepsize . 9

3.3 Diminishing stepsize . 9

3.4 Gradient related . 10

3.5 When to stop? . 10

4 Lecture 4 11

4.1 Lipschitz continuity of gradient . 13

5 Lecture 5 14

5.1 How to compare algorithms?: Convergence rate 14

5.2 Convergence rate of Quadradic function f . 15

5.2.1 Approximation of function f to quadratic function 15

5.2.2 Error rate for approximated quadratic function 16

5.2.3 Constant step size . 16

5.2.4 Different step size (Exact line search) 17

6 Lecture 6 18

6.1 Approximated quadratic function when f(x) holds strong convexity 18

6.1.1 Exact line search . 18

6.1.2 Exact line search – When to stop? . 19

6.1.3 Backtracking . 19

6.2 Approximated quadratic function when f(x) holds convexity 20

6.2.1 Convergence rate . 20

6.2.2 When to stop? . 21

7 Lecture 7 21

7.1 Heavy ball method . 21

7.1.1 Casestudy: quadratic function optimization 22

7.2 Nestrov’s acceleration method . 22

3

8 Lecture 8 23

8.1 Newton method . 23

8.2 Newton’s method when the initial point is close to the optimal point. 23

8.3 Newton’s method for arbitrary initial point 24

8.4 Stopping criterion for Newton’s method . 25

8.5 Number of iterations for Newton’s method . 25

8.6 Newton’s method for nonconvex problem and arbitrary initial point 25

8.7 Intermediate Wrap-up . 26

8.8 Second-order is always better than first-order? 27

9 Lecture 9 27

9.1 Quasi Newton method . 27

9.2 Intermediate wrap-up . 28

10 Lecture 10 28

11 Lecture 11 28

11.1 Algorithms for constrained optimization . 28

11.2 Convex function . 29

11.3 m−Strongly convex function . 29

11.4 Convex set . 29

11.5 m−Strongly convex set . 29

11.6 When f is convex, X is convex . 30

11.7 When f is arbitrary, X is convex . 30

11.7.1 FOC necessary condition . 30

11.7.2 SOC necessary condition . 31

12 Lecture 12 32

12.1 How to solve a constrained optimization problem? 32

12.2 Frank-wolfe . 33

12.3 Remarks on Frank-Wolfe’s complexity . 33

12.4 Convergence . 33

12.5 Frank-worlfe: gradient related . 34

12.6 Frank-wolfe: find stationary point . 34

12.7 Frank-wolfe when f is convex . 34

13 Lecture 13 36

13.1 Frank-wolfe: when f is strongly convex . 36

13.2 Frank-wolfe: when f is convex & X is strongly convex 37

13.3 Gradient Projection method . 38

13.4 Remarks on Gradient Prjection method’s complexity 39

13.5 Special case: Projected Gradient method . 39

13.6 Properties of projection operator . 39

13.7 Step size of Gradient projection method . 40

4

14 Lecture 14 41

14.1 Convergence analysis of gradient projection methods (Quadratic function) . . 41

14.1.1 What if c.d.(Q) is large? . 41

14.2 Convergence analysis of gradient projection methods (general function) . . . 42

14.3 Proximal algorithms: nonsmooth optimization 45

14.4 Moreav envelope . 46

15 Lecture 15 48

15.1 Convergence of Proximal algorithm . 50

15.2 Convergence rate of Proximal algorithm . 51

16 Lecture 17 52

16.1 Lagrangian function . 52

16.2 SOC sufficient . 53

17 lecture 18 55

17.1 Sensitivitiy theorem . 55

5

1 Lecture 1

2 Lecture 2

2.1 Properties of local minimum x∗

2.1.1 First-order necessary condition

We use the abbreviation FOC(necessary) which denotes first-order necessary condition

Theorem 2.1 (FOC(necessary)). If x∗ is a local min, then ∇f(x∗) = 0.

??

Proof. Let g(t) = f(x∗ + t∆x). Then by the definition of derivation, we have

g′(0) = lim
t→0

f(x∗ + t∆x)− f(x∗)

t
.

Note that f(x∗ + t∆x) − f(x∗) > 0 holds by the definition of optimal point x∗. So we

conclude that g′(0) ≥ 0. Then we have

0 ≤ g′(0) = ∇f(x∗)
⊤∆x

for all ∆x. Now plug in ∆x = −∆f(x∗), then we have 0 ≤ −||∇f(x∗)||2. Then this

concludes that we have ∇f(x∗) = 0.

2.1.2 Second-order necessary condition

Theorem 2.2 (SOC (necessary)). If x∗ is a local min, then ∇2f(x∗) ≽ 0.

Proof. Proof by a contradiction. If ∇2f(x∗) ̸≽ 0 holds, then there exist ∆x that satisfies

∆x⊤∇2f(x∗)∆x < 0. Then, by Taylor expansion, we have

f(x∗︸︷︷︸
nominal

+ t∆x︸︷︷︸
perturbation

) = f(x∗) + t∆f(x∗)
⊤∆x+

1

2
∆x⊤∇2f(y(t)︸︷︷︸

new point

)∆x

Then as t→ 0, then y(t)→ x∗, so we have

1. ∇2f(y(t))→ ∇2f(x∗).

2. ∆x⊤∇2f(y(t))∆x→ ∆x⊤∇2f(x∗)∆x.

Therefore, the above two bullets lead us to conclude that f(x∗ + t∆x) < f(x∗) holds which

contradicts the definition of local min.

6

2.1.3 Second-order sufficient condition

Theorem 2.3 (SOC (sufficient)). If x∗ satisfies ∇f(x∗) = 0 and ∇2f(x∗) > 0, then

the following holds.

1. x∗ is a strict local min.

2. ∃ϵ > 0, µ > 0 such that f(x) ≥ f(x∗) + µ||x− x∗||2.

Proof. If ∇f(x∗) > 0 holds then there exist ϵ, λ > 0 such that mineig(∇2f(x)) ≥ λ for

∀x : ||x−x∗|| ≤ ϵ. Now, let the point y as an intermediate point between x∗ and x∗ +∆x.

The corresponding Taylor expansion would be

f(x∗ +∆x) = f(x∗) +∇f(x∗)∆x+
1

2
∆x⊤∇2f(y)∆x.

Let x = x∗ +∆x and note that ∇f(x∗) = 0 holds and ∇2f(y) ≽ λI. Then we have

f(x) ≥ f(x∗) +
λ

2
||∆x||2

where setting µ = λ/2 finishes the proof.

2.2 Update rule

So far, we have investigated some properties of local minimum. FOC, SOC. However, the

main question that we are interested in is more practical: how to find local minimum?.

Within this sense, let’s come up with decent method. We cannot find x∗ in one shot.

We have to find it gradually. If we generate the point sequence as {x(0) → x(1) → x(2) →
· · · → x(k) → x(k+1) → · · · } and what we want is the improvement at each iteration, i.e.

f(x(0)) > f(x(1)) > f(x(2)) > · · · > f(x(k)) > f(x(k+1)) > · · · . Within this sense, we

introduce the following update rule

Definition 2.4 (Update rule). x(k+1)︸ ︷︷ ︸
new point

= x(k)︸︷︷︸
old point

+ α(k)︸︷︷︸
stepsize

∆x(k)︸ ︷︷ ︸
direction

Theorem 2.5. Three followings are held.

1. If ∇f(x(k))⊤∆x(k) > 0, then ∃τ > 0 such that f(x(k+1)) > f(x(k)) for ∀α(k) ∈
[0, τ].

2. If ∇f(x(k))⊤∆x(k) < 0, then ∃τ > 0 such that f(x(k+1)) < f(x(k)) for ∀α(k) ∈
[0, τ].

3. If ∇f(x(k))⊤∆x(k) = 0, then look at sign((∆x(k))⊤∇2f(x(k))∇x(k)).

7

2.2.1 Descent direction

Definition 2.6 (Descent direction). In the update rule, if ∇f(x(k))⊤∆x < 0 is

satisfied, then ∆x is called descent.

2.2.2 Steepest descent

Note that there are infinitely many descent directions. Then what is the best direction?.

Let’s take a look at the following equation to come up with what is the best direction

intuitively.

f(x(k+1))︸ ︷︷ ︸
(I)

= f(x(k))︸ ︷︷ ︸
fixed

+α(k)︸︷︷︸
fixed

∇f(x(k))⊤∇x(k)︸ ︷︷ ︸
(II)

+ · · ·

One intuition that we could get is reducing term (II) also leads to reducing term (I). Then

we can determine the best direction as follows.

min
∆x

∇f(x(k))⊤∆x

s.t. ||∆x|| ≤ 1

Note that regarding with norm ||∆x||, it is open to either choose 1−, 2 −∞− norm, etc...

In most case, we use standard norm of ||∆x||2 where

∆x = − ∇f(x
(k))

||∇f(x(k))||
.

Since we have a step size, let’s make it proportional then we can rewrite it as ∆x =

−∇f(x(k)).

Definition 2.7 (Steepest descent). If we choose ∆x(k) = −∇f(x(k)), then we call

this method as steepest descent method (w.r.t || · ||2). We can generalize this to

∆x(k) = −D(k)∇f(x(k)) where D(k) ≻ 0.

Theorem 2.8. If D(k) ≻ 0, then the steepest descent direction is a descent direction.

Namely for ∆x(k) = −D(k)∇f(x(k)) where D(k) ≻ 0, ∇f(x(k))⊤∆x(k) ≤ 0 holds.

2.3 Stepsize

How to find a stepsize α(k)?

1. Exact line search

2. Limited line search

3. Backtracking

8

2.3.1 Exact line search

3 Lecture 3

We are interested in solving the problem min f(x) and we have shown that optimal point x∗

satisfies ∇f(x∗) = 0 (FOC). We are interested in computing {x(0) → x(1) → x(2) → · · · } by
a algorithm x(k+1) = x(k)+α(k)∆x(k). We determine α(k) by 1) exact line search 2) limited

line search 3) backtracking and we call ∆x(k) a descent direction if ∇f(x(k))⊤∆x(k) < 0 is

satisfied. The important part of previous methods are whether f(x(k+1)) < f(x(k)) holds.

Now, let’s focus on how much it could improve, namely f(x(k+1))− f(x(k)).

3.1 Armijo rule

Definition 3.1 (Armijo rule). We have a pre-set parameter 0 < σ < 1. Pick the

smallest t such that α(k) = αβt satisfies the following inequality

f(x(k+1))− f(x(k)) < σ∇f(x(k))⊤∆x(k)α(k) (1)

Theorem 3.2. If t is bigger than the threshold, then Inequality (1) is always satis-

fied.

3.2 Constant stepsize

So far, we have dealt with how to determine step size α(k) that varies as k goes by. Then

what if we fix the α(k) = α as a constant? we call this gradient algorithm

x(k+1) = x(k) − α∇f(x(k)) (2)

The first question that naturally we can come up with is whether the gradient algorithm

guarantees convergence. Usually, it does not converge.

3.3 Diminishing stepsize

If α(k) → 0 but
∑∞

k=1 α
(k) = +∞ then it’s going to work. For example if α(k) = 1

k , it does

not work but if α(k) = 1
k2 , then it works. However, we have a convergence issue. Let’s think

about the algorithm that satisfies a descent direction, i.e. x(k+1) = x(k) + α(k)∆x(k) where

∇f(x(k))⊤∆x(k) < 0. The problem happens if the direction is becoming nearly orthogonal

to the gradient. So we need the following assumption

lim
k→∞

∇f(x(k))⊤∆x(k)∣∣∣∣∇f(x(k))
∣∣∣∣ ∣∣∣∣∆x(k)

∣∣∣∣ < 0 (3)

Note that (3) tells us that the angle between direction (∆(k)) and the gradient (∇f(x(k)))

should not be 90 degree.

9

3.4 Gradient related

Definition 3.3 (Gradient related). {∆x(k)}∞k=1 is gradient related if for any sub-

sequence {x(k)}k∈K such that {x(k)}k∈K converges to a non-stationary point, then

• {∆x(k)}∞k=1 is bounded

• limk→∞ supk∈K ∆f(x(k))⊤∆x(k) < 0.

Based on the Defintion 3.3, we have the following lemma

Lemma 3.1. Let gradient direction ∆x(k) = −D(k)∇f(x(k)) where the matrix

D(k) ≻ 0. The matrix D(k) can be regarded as a scaling factor related to the

gradient. If there exists a constant c1 > 0, p1 ≥ 0, c2 > 0, p2 ≥ 0 that satisfies then

this is gradient gradient-related algorithm.

For example, ∆x(k) = −∇f(x(k)) is gradient related algorithm (also, later on, we define

this as gradient algorithm) since D(k) = I

3.5 When to stop?

We have some candidates to determine when to stop

1. Stop if ||∇f(x(k))|| ≤ ϵ

2. Stop if ||∇f(x(k))||
||∇f(x(0))|| ≤ ϵ

3. Stop if ||x(k+1 − x(k)|| ≤ ϵ

Theorem 3.4. Suppose we have an optimal point x∗ that satisfies SOC sufficient,

i.e. ∇2f(x∗) ≻ 0. Think about a ball B around the x∗ that satisfies ∇2f(x) ≻ 0.

Then if ||∇f(x|| ≤ ϵ for any x ∈ B, then the following holds,

1. ||x− x∗|| ≤ ϵ/m

2. f(x)− f(x∗) ≤ ϵ2/2m

it also means that if the gradient ∇2f(x) is small, then it is close enough to

solution either x∗ or f(x∗).

Proof. Assume that intermediate point y between x∗ and x that is also stated in a ball B.

i.e. x, x∗, y ∈ B. The Taylor expansion where x∗ is a new point and x is a nominal point is

given as follows.

f(x∗) = f(x) + ∆f(x)⊤∆x+
1

2
∆x⊤∇2f(y)∆x

≥ f(x) +∇f(x)⊤∆x+
1

2
m||∆x||2

≥ min
z∈Rn

(
f(x) +∇f(x)⊤z + 1

2
m||z||2

)

10

The second inequality comes from the fact that y ∈ B so ∇2f(y) ≽ mI holds. We let

m be the minimum eigenvalue of ∇2f(y) for any y ∈ B. Then, the last inequality is a

quadratic convex function since ∇f(x) ≻ 0. Then it attains its minimum at point z∗ that

satisfies FOC. Therefore z∗ = −∇f(x)/m is plugged into the quadratic term and we get the

following.

f(x∗) ≥ f(x)− ||∇f(x)||
2

2m

≥ f(x)− ϵ2

2m

this completes the proof of the second bullet point. Now, let’s complete the proof of the

first bullet point. Again, we have that Taylor expansion as

f(x) = f(x∗) +∇f(x∗)
⊤∆x+

1

2
∆x⊤∇2f(ỹ)∆x

= f(x∗) +
1

2
∆x⊤∇2f(ỹ)∆x (4)

and by the second bullet point, we have

f(x∗) ≥ f(x)− ϵ2

2m
(5)

Add above Equation (4) and Inequality (5), then we have

ϵ2

2m
≥ 1

2
m||∆x||2

which we finally have

||∆x|| ≤ ϵ

m

where ∆x = x− x∗.

4 Lecture 4

So far, we are interested in finding that min f(x). We find its minimum by an iterative

method,i.e. {x(0) → x(1) → x(2) → · · · } where x(k+1) = x(k) + α(k)∆x(k) holds. If we use

the gradient method, i.e. ∆x(k) = −∇f(x(k)), then our gradient descent algorithm becomes

x(k+1) = x(k) − α(k)∇f(x(k)). However, in most cases, we don’t know the exact value of

∇f(x(k)). Let g(k) to be approximate gradient of ∇f(x(k)). Namely, we let the following

expression,

g(k) = ∇f(x(k)) + e(k)

where e(k) is an approximation error term.

Relatively small error

Assume that e(k) is small relative to the gradient, namely for all k, ||e(k)|| ≤ ||∇f(x(k)||
holds. one downside of this algorithm is that as we proceed gradient gets smaller, and then

the error must be small simultaneously.

11

Lemma 4.1. If ||e(k)|| ≤ ||∇f(x(k)|| holds for ∀k, then g(k) is a decent direction, i.e.

∇f(x(k))⊤(−g(k)) < 0.

Proof.

∇f(x(k))⊤(−g(k)) = −||∇f(x(k))||2 −∇f(x(k))⊤e(k)

≤ −||∇f(x(k))||2 + ||f(x(k))|| · ||e(k)||

= −||∇f(x(k))||(||f(x(k))|| − ||e(k)||︸ ︷︷ ︸
>0

)

≤ 0

Note that first equality holds by definition of g(k), and second inequality holds by Cauchy

inequality.

Bounded error

Now assume that ||e(k)|| ≤ δ holds for ∀k. One of our guesses on how the x(k)s behave is that

points might show erratic behavior in the neighborhood of x∗, an optimal point. However,

if x(k) states outside of the neighborhood, it might show convergence behavior following a

decent algorithm.

Lemma 4.2. Define neighborhood D = {x | ||∇f(x)|| ≤ δ}. Then the point x(k)

outside of D converges as a decent direction. Namely, −∇f(x(k))⊤g(k) ≤ 0 holds for

x(k) /∈ D.

Proof.

∇f(x(k))⊤(−g(k)) = −||∇f(x(k))||2 −∇f(x(k))⊤e(k)

≤ −||∇f(x(k))||2 + ||f(x(k))|| · ||e(k)||

≤ −||∇f(x(k))||2 + ||f(x(k))|| · δ

= −||∇f(x(k))||(||f(x(k))|| − δ︸ ︷︷ ︸
>0

)

≤ 0

Algorithm gradient algorithm perturbed gradient algorithm

Equation x(k+1) = x(k) − α(k)∇f(x(k)) x(k+1) = x(k) − α(k)
(
∇f(x(k)) + δ

)
Objective min f(x) min f(x) + δ⊤x

12

SGD: Stochastic Gradient descent

Now, instead of saying error e(k) is relatively smaller than the gradient or bounded by a

constant, let’s regard it as a random variable. Let us assume g(k) = ∇f(x(k))+e(k) where e(k)

is random. Then the objective function that we wanted to minimize was min f(x). However,

since we have randomness in a function itself, the objective function should be Ew [F (x,w)]

where w is an uncertainty. Therefore our gradient looks like ∇f(x) = Ew [∇xF (x,w)].

One problem for computing gradient is that it is hard to obtain in the real world since the

expectation is over the infinite w space. One basic approach is approximating ∇f(x) with
just one uncertainty sample. Namely, we have defined∇f(x(k)) as Ew

[
∇xF (x(k), w)

]
but we

will approximate this with just using one sample w(k),i.e ∇f(x(k)) = Ew

[
∇xF (x(k), w)

]
≈

∇xF (x(k), w(k)). Now, let’s define the error e(k) as follows.

e(k) = ∇xF (x(k), w(k))− Ew

[
∇xF (x(k), w)

]

Lemma 4.3. Since Ew(e
(k)) = 0, SGD is descent algorithm on average.

Theorem 4.1 (SGD convergence). Let us assume that e(k) is i.i.d and zero mean

and bounded. Assume that stepsize satisfy limk→∞ α(k) → 0,
∑∞

k=0 α
(k) = ∞, and∑∞

k=0(α
(k))2 =∞. Then SGD converges to a stationary point.

Before moving to the next theorem, what is the limit point?

Example 4.2. If a sequence is {+1,−1,+1,−1, ..., }, then there is no convergence,

and the sequence has two points: +1,−1.

Theorem 4.3. For given algorithm x(k+1) = x(k) + α(k)∆x(k). Assume that

{∆x(k)}∞k=1 is gradient related. Let’s say we compute stepsize α(k) by among 1)

exact line search, 2) limited line search, or 3) Armijo rule. Then every limit point of

{x(k)}∞k=1 is a stationary point.

Proof. To be continued.

4.1 Lipschitz continuity of gradient

Definition 4.4 (Lipschitz continuity of gradient). Function f is Lipschitz continuity

of gradient if there exist L > 0 that satisfy ||∇f(x) − ∇f(y)|| ≤ L||x − y|| for
∀x, y ∈ Rn.

13

Theorem 4.5 (Bounded by quadratic function). Lipschitz continuity of gradient

implies that f(x+ y) ≤ f(x)+ y⊤∇f(x)+ L
2 ||y||

2 for ∀x, y. This also brings up that

when x = 0, f(y) ≤ f(0) + y⊤∇f(0) + L
2 ||y||

2 holds which means function f(x) is

bounded by quadratic term L
2 ||y||

2.

Proof. Let g(t) = f(x+ ty) for all t ∈ R. Then, we have the following expression.

f(x+ y)− f(x) = g(1)− g(0) =

∫ 1

0

dg(t)

dt
dt

=

∫ 1

0

y⊤∇f(x+ ty)dt

=

∫ 1

0

y⊤f(x)dt+

∫ 1

0

y⊤(∇f(x+ ty)−∇f(x))dt

≤
∫ 1

0

y⊤f(x)dt+

∫ 1

0

||y|| · ||∇f(x+ ty)−∇f(x)||dt

≤
∫ 1

0

y⊤f(x)dt+

∫ 1

0

||y|| · L||(x+ ty)− x||dt

= y⊤f(x) + L||y||2
∫ 1

0

tdt

= y⊤f(x) +
L

2
||y||2

5 Lecture 5

Theorem 5.1 (Capture theorem). If x0 is close enough to isolated local min x∗,

then {x(k)} → x∗.

5.1 How to compare algorithms?: Convergence rate

Let’s say you have a algorithm that

x(0) → x(1) → x(2) → · · · → x∗

where x∗ are bunch of points in Rn. We assume x∗ is a unique limit point. We want to

measure its speed of convergence. We have some candidates to express how errors become

smaller. e(x) = ||x − x∗|| or e(x) = ||f(x) − f(x∗)||. In most cases, we are interested in

asympototic convergence rate behavior so the tail is important. However, just an asymptotic

convergence rate assumption is not enough.

Think about two algorithms 1 and 2 where algorithm 1 yields {e(k)} = {1, 0.9, 0.8, 0.2, 10−2}
and algorithm 2 yields {e(k)} = {1, 0.7, 0.8, 0.6, 0.3, 10−3}. Which algorithm is better is not

an obvious question since the comparison of e(2) and e(4) is different.

This reminds us to set a baseline for convergence rate comparison among algorithms.

14

Definition 5.2 (Linear convergence). Think about a sequence {1, β, β2, β2, · · · }. We

say {e(k)} converges linearly or geometrically with factor β is there exist q > 0 that

for all k ∈ N e(x(k)),≤ qβk satisfied. Note that e(x(k)) = e(k).

Theorem 5.3. The error sequence {e(k)} converges linearly if limk→∞ e(k+1)/e(k) <

1 holds. In this case, a factor β = limk→∞ e(k+1)/e(k).

The previous definition and theorem let us conclude that if β decreases, then the algo-

rithm gets faster. Now, what if β = 0? This means that the sequence {e(k)} is faster than
{βk} for every 0 < β < 1. We say this as converging superlinearly.

Definition 5.4 (Superlinear convergence). The sequence {e(k)} converges superlin-
early with order p if e(x(k)) ≤ qβpk

is satisfied (for all k or for large enough k) for

some q > 0 and 0 < β < 1.

Theorem 5.5. The error sequence {e(k)} converges superlinearly with order p if

limk→∞ e(k+1)/(e(k))p ≤ ∞ holds.

Definition 5.6 (Quadratic convergence). In the case of p = 2 when superlinear

convergence, we call this quadratic convergence. Namely, if limk→∞ e(k+1)/(e(k))2 ≤
∞ holds.

Note that the gradient algorithm yields an error sequence to satisfy linear convergence

and Newton’s algorithm makes it to satisfy quadratic convergence. Before moving on to

convergence rate analysis on specific function form of f , let’s define condition number for

p.d. martrix.

Definition 5.7. For a positive definite matrix Q, we define its condition number as

c.d. =
max eig(Q)

min eig(Q)
=

λmax(Q)

λmin(Q)
≥ 1.

5.2 Convergence rate of Quadradic function f

5.2.1 Approximation of function f to quadratic function

Now let’s think about a function f : Rn → R and let x∗ be strict (isolated) local minima

where it satisfies SOC (sufficient) (Defintion 2.3). By a taylor expansion, we can rewrite

f(x) as f(x) = f(x∗) +∇f(x∗)
⊤(x− x∗) + 1/2(x− x∗)

⊤∇2f(x∗) +O(||x− x∗||2). By SOC

(sufficient) condition, we have f(x∗) = 0,∇f(x∗)
⊤ = 0. Now, if x is close enough to x∗, by

capture theorem (Theorem 5.1), x− x∗ → x, so the RHS of the taylor expansion get closes

to 1
2x

⊤Qx where Q := ∇2f(x∗). This observation provides us an insight that min f(x) is

15

close to solving where min 1
2x

⊤Qx, namely thinking f(x) = 1
2x

⊤Qx within a bound that

satisfies a capture theorem.

5.2.2 Error rate for approximated quadratic function

Within this sense, let’s remind the gradient algorithm: x(k+1) = x(k) − α(k)∇f(x(k)). Ap-

plying the above observation, we have a modified gradient algorithm as x(k+1) = x(k) −
α(k)Qx(k) = (I− α(k)Q)x(k). In this scenarios, the error term

e(x(k)) := ||x(k) − x∗|| = ||x(k)|| (6)

since x∗ = 0 in a quadratic function f(x). Then we have

e(x(k+1))2 = ||x(k+1)||2 = (x(k))⊤(I− α(k)Q)2x(k) ≤ λmax((I− α(k)Q)2)||x(k)||2

. Then finally we have
e(x(k+1))

e(x(k))
≤
√

λmax((I− α(k)Q)2).

As we know that smaller β brings about a faster convergence rate, it is advantageous to

minimize the upper bound as much as we can. We have the freedom to choose stepsize α(k).

Then, what is optimal α(k) that minimizes the upper bound?

Let’s investigate how the constant step size (subsection 5.2.3) and different step size

(subsection 5.2.4) could affect the upper bound of error rate (β) as follow.s

5.2.3 Constant step size

Let the eigenvalues of Q as {λ1, λ2, · · · , λn}. Then eigenvalues of I − α(k)Q are {1 −
α(k)λ1, 1− α(k)λ2, · · · , 1− α(k)λn}, and eigenvalues of (I− α(k)Q)2 are {(1− α(k)λ1)

2, (1−
α(k)λ2)

2, · · · , (1 − α(k)λn)
2}. Let λmax(Q) = m and λmin(Q) = M . Then it is known (or

easy to check) that λmax

(
(I− α(k)Q)2

)
= max {(1− α(k)m)2, (1− α(k)M)2}. Therefore, we

have
e(x(k+1))

e(x(k))
≤ max

{∣∣∣1− α(k)m
∣∣∣2 , ∣∣∣1− α(k)M

∣∣∣2}.
Now, this upper bound provides an answer on how to choose α(k). By simple math, it

is easy to find that 2
m+M = argminα(k)

(
max

{∣∣1− α(k)m
∣∣2 , ∣∣1− α(k)M

∣∣2}) and setting

α(k) = 2
m+M provides its upper bound to be M−m

M+m = c.d.(Q)−1
c.d.(Q)+1 .

To wrap up, we approximate f(x) to 1
2x

⊤Qx within a small region and use a gradient

algorithm for optimal stepsize, then we have the factor β that satisfies as follows,

e(x(k+1))

e(x(k))
≤ c.d.(Q)− 1

c.d.(Q) + 1
.

It is easy to check that 0 < β = c.d.(Q)−1
c.d.(Q)+1 < 1, so this method is linear convergence that

rate depends on condition number.

16

5.2.4 Different step size (Exact line search)

Let’s use exact line search to find optimal α(k). Again, we have a gradient algorithm:

x(k+1) = x(k) − α(k)∇f(x(k)). We can find optimal α(k) that satisfies

α(k) = argmin
α≥0

f(x(k) − α∇f(x(k)).

Since the function is convex with respect to α, the optimal α satisfies 0 = ∂f(x(k)−α∇f(x(k)))
∂α .

Let’s call g(k) = ∇f(x(k)) = Qx(k). Then the optimal α should satisfy

−(g(k))⊤∇f(x(k) − αg(k)) = 0.

Since we know that ∇f(x(k) − αg(k)) = 0 = Q(x(k) − αg(k)) holds. Then the optimal α(k)

would be expressed as

α(k) =
(g(k))⊤g(k)

(g(k))⊤Qg(k)
.

Then, by some computation, we have the following expression as

f(x(k+1)) =

(
1−

(
(g(k))⊤(g(k))

)2(
(g(k))⊤Q(g(k))

) (
(g(k))⊤Q−1(g(k))

)) f(x(k)).

Now, apart from the previous constant step size case, let’s define the error

e(x(k)) := f(x(k))− f(x∗). (7)

As we know, we are minimizing the quadratic function so by SOC condition, we have

f(x∗) = 0. Then we have

e(x(k+1)

e(x(k)
≤
(
c.d.(Q)− 1

c.d.(Q) + 1

)2

.

Note that the constant stepsize case and different step size case are not directly

comparable since how we define the error e(x(k)) is different. However, one impor-

tant lesson is that the factor β in both cases has a relationship with the condition number,

c.d.(Q).

Let’s wrap up the subsection 5.2. When f satisfies the capture theorem and SOC (nec-

essary) condition, then we could conclude the convergence rate as follows.

Approximated quadratic function e(x(k)) convergence rate Reference

Constant step size ||x(k) − x∗|| β = c.d.(Q)−1
c.d.(Q)+1 Subsection 5.2.3

Different step size (Exact line search) f(x(k))− f(x∗) β =
(

c.d.(Q)−1
c.d.(Q)+1

)2
Subsection 5.2.4

Table 1: Convergence rate for approximated quadratic function

17

6 Lecture 6

6.1 Approximated quadratic function when f(x) holds strong con-

vexity

We are still touching down the problem that approximating the problem min f(x) to min 1
2x

⊤Qx

where Q = ∇2f(x∗). Let’s assume that there exists m,M > 0 such that mI ≼ ∇2f(x) ≼ MI
holds for all x.

What if such m,M doesn’t exist for all x? We need to consider sub-level set {x | f(x) ≤
f(x(0))} and then we can define such m,M over this set. There are a few things that we

can check

1. Since mI ≼ ∇2f(x∗) holds, we can say SOC sufficient holds.

2. M
m is an upper bound on c.d.(Q)

3. Recall that we have the inequality f(x) − f(x∗) ≤ ||∇f(x)||2
2m where m says that the

gradient is small, then point x is close to a solution. → Capture theorem

Above first and thrid points guarantee that we can still approximate f(x) to a quadtradic

function as what we have done on Subsection 5.2.1. We want to check the convergence rate

within this case, with 1) exact line search and 2) backtracking.

6.1.1 Exact line search

Let’s start with how the exact line search shapes the gradient algorithm

f(x(k+1)) = f(x(k) − α(k)∇f(x(k)))

= min
α≥0

f(x(k)︸︷︷︸
nomial point

−α(k)∇f(x(k))︸ ︷︷ ︸
perturbation

)

= min
α≥0

f(x(k)) +∇f(x(k))⊤(−α∇f(x(k))) +
1

2
(−α∇f(x(k)))⊤∇2f(z(k)︸︷︷︸

new point

)(−α∇f(x(k)))


Note that Taylor expansion of the second equation provides the third equation and we can

replace the higher order terms larger than the third order by introducing a new point z(k)

(mean value theorem). Now, note that by assumption, we have ∇2f(z(k)) ≤ MI holds. So

we have the following

f(x(k+1)) ≤ min
α≥0

(
f(x(k)) +

(
−α+

Mα2

2

) ∣∣∣∣∣∣∇f(x(k))
∣∣∣∣∣∣2)

≤ f(x(k))− 1

2M

∣∣∣∣∣∣∇f(x(k))
∣∣∣∣∣∣2

Note that in the second line inequality, the argmin is obtained at α = 1/M . Now we use

the fact that −2m(f(x(k)) − f(x∗)) ≥ −||∇f(x(k))||2 holds. We define the error e(x(k)) :=

f(x(k))− f(x∗). Then we have the following inequality.

e(x(k+1))

e(x(k))
≤ 1− m

M
≤ 1− 1

c.d.(Q)

18

So, in case of exact line search, the error sequence linearly converges with a factor β =

1−m/M ≤ 1− 1/c.d.(Q)

6.1.2 Exact line search – When to stop?

So far, we have investigated the algorithm’s convergence rate. Then, if we know the al-

gorithm we have come up with converges, it is natural to ask what would be a good k

to stop the iteration. Specifically, if we are given a task minx f(x), then the sequence

{x(0) → x(1) → x(2) → · · · → x(k) → · · · } goes infinity and we need to stop at some point

k.

Let’s say we stop at point k if f(x(k))− f(x∗) ≤ ϵ is satisfied. Note that ϵ is a hyperpa-

rameter that a user can choose before executing iteration. Since in the above example, we

have defined the error term

e(x(k)) := f(x(k))− f(x∗)

, then we stop when e(x(k)) ≤ ϵ holds. We have computed that the error sequence satisfies

e(x(k)) ≤ (1− m
M)ke(0), let’s finish our iteration at time k when (1− m

M)ke(0) ≤ ϵ is satisfied.

Then, we have

k ≥
log
(

f(x(0))−f(x∗)
ϵ

)
log
(
1− m

M

)−1 .

We say the number of iteration we need is

k = O(log 1

ϵ
).

Also the number of iterations is proportional to log of initial optimality gap f(x(0))−f(x∗).

One remark that we can make through this is that if the denominator term (log
(
1− m

M

)−1
)

takes a huge impact on lower bound, then we use the method heavy ball method.

6.1.3 Backtracking

Recall that backtracking is given by α→ αβ → αβ2 → · → αβik where setting α(k) = αβik

satisfy the Armijo rule f(x(k)+α(k)∆x(k))−f(x(k)) ≤ σ∇f(x(k))⊤(α(k)∆x(k)) for 0 > σ < 1.

Since we are dealing with gradient descent algorithm, i.e. ∆x(k) = −∇f(x(k)), Armijo rule

is modified as

f (x(k) − α(k)∇f(x(k))︸ ︷︷ ︸
x(k+1)

)− f(x(k)) ≤ −σα(k)||∇f(x(k))||2.

For any non-negative number j, we can do taylor expansion on f(x(k) + αβj∆x(k)) =

f(x(k))+∇f(x(k))⊤(αβj∆x(k))+ 1
2 (αβ

j∆x(k))⊤∇2f(z(k))(αβj∆x(k)). Since we know we are

using gradient descent,i.e. ∆x(k) = −∇f(x(k)) and by assumption we have ∇f(z(k)) ≤MI.
So we have the following Taylor expansion with assumption inequality.

f(x(k) + αβj∆x(k))− f(x(k)) ≤ −
(
1− Mαβj

2

)(
αβj

) ∣∣∣∣∣∣∇f(x(k))
∣∣∣∣∣∣2 .

19

Now, let’s take a look at the coefficient of RHS of the above two inequalities: σ and 1−Mαβj

2 .

We know that 0 < σ < 1 holds and as j → ∞, 1 − Mαβj

2 → 1. This means there exist j

that satisfies 1 − Mαβj

2 ≥ σ. Let µ ∈ N ∪ {0} to be the smallest nonnegative integer such

that 1− Mαβµ

2 ≥ σ holds. Then we have two scenarios,

1. If µ = 0, then α is small

2. if µ > 0 then 1− Mαβµ−1

2 < σ is satisfied.

By armijo rule, α(k) ≥ αβµ holds. Then Armijo rule provides the following inequalities

f(x(k+1))− f(x(k)) ≤ −σα(k)||∇f(x(k))||2

≤ −σαβµ||∇f(x(k))||2

Now, we apply the assumption −||∇f(x(k))||2 ≤ −2m(f(x(k)) − f(x∗)) and really that we

have defined the error as

e(x(k)) := f(x(k))− f(x∗).

Then we have

e(x(k+1)) ≤ e(x(k)) (1− σαβµ(2m)) .

Let’s say scenario 2 happens (µ > 0), which means 1− mαβµ−1

2 ≤ σ holds. This leads us to

come up with

−αβµ <
2(1− σ)β

M
.

Plugging the above inequality into the error inequality, then we finally have

e(k+1)

e(k)
≤ 1−

(
4σ (1− σ)β

(m
M

))
.

One important remark we can come up with is that if σ → 1/2 and β → 1 make the

backtracking method similar to the exact linear search method. Both case’s β is goes to

1−m/M .

Let’s wrap up what we have done between lecture 5 and the current contents.

App. Quad. f Error e(k) Method Linear convergence rate Reference

any f ||x(k) − x∗|| Constant step size β = c.d.(Q)−1
c.d.(Q)+1 Subsection 5.2.3

any f f(x(k))− f(x∗) Exact line search β =
(

c.d.(Q)−1
c.d.(Q)+1

)2
Subsection 5.2.4

f : strong cvx. f(x(k))− f(x∗) Exact line search β = 1− m
M Subsection 6.1.2

f : strong cvx. f(x(k))− f(x∗) Backtracking β = 1−
(
4σ (1− σ)β

(
m
M

))
Subsection 6.1.3

Table 2: Convergence rate for approximated quadratic function

6.2 Approximated quadratic function when f(x) holds convexity

6.2.1 Convergence rate

So far, we have looked up the convergence rate when f(x) holds strong convexity, i.e.

existence of m,M > 0 such that mI ≼ ∇2f(x) ≼ MI holds for all x. However, what if m

does not exist? Let’s focus on the case where ∇2f(x) ≥ 0 holds for all x.

20

Definition 6.1 (little o notation). A sequence {e(k)} satisfies limk→∞
e(k)

1/k = 0, then

we say e(k) = o(1k). This could be interpreted as 1/k converges faster than a sequence

{e(k)}. We say if the

Theorem 6.2 (Sublinear convergence of convexity function). Assume that∇2f(x) ≽

0 holds. We define X∗ as a set of global solutions and assume X∗ is non-empty and

bounded. We also have the following additional three assumptions as follows:

1. ||∇f(x)−∇f(y)|| ≤ L||x− y||.

2. ∃c > 0 such that ∇f(x(k))⊤∆x(k) ≤ −c||∇f(x(k))||2 holds in case of gradient

algorithm x(k+1) = x(k) + α(k)∆x(k).

3. α(k) ∈ [ϵ, (2− ϵ)ᾱ(k)]

Then, within above assumptions, all limit points of {x(k)} are optimal, and e(k) :=

f(x(k))− f(x∗) = o(1k)

Proof. Based on the preview theorem, we know that {e(x(k))} → 0 as k →∞

6.2.2 When to stop?

One implication of above theorem is that e(k) = o(1k) holds. This means there exists q > 0

such that e(k) ≤ q
k satisfies. Then, let’s say we want to stop the iteration when e(k) ≤ ϵ

holds. We can compute the iteration k that satisfies q
k ≤ ϵ, where k = O(1ϵ)

f : Strong convexity (m > 0) f : convex (m = 0)

k = O(log 1/ϵ)(Subsection 6.1) k = O(1/ϵ) (Theorem 6.2)

Table 3: Iteration number of strongly convex and convex case

Let’s say we want to guarantee the accuracy of L digits, i.e. ϵ = 10−L. Then m > 0

provides a complexity to a linear in number of digits (L) and m = 0 provides a complexity

to an exponential in number of digits (L).

7 Lecture 7

So far, we have talked about gradient method x(k+1) = x(k)−α(k)∇f(x(k)). However, could

we do better than that? Let’s think about the following two acceleration methods: The

heavy-ball method and Nestrov’s acceleration method.

7.1 Heavy ball method

Let’s think about the following descent method.

x(k+1) = x(k) − α(k)∇f(x(k)) + β(k)(x(k) − x(k−1)︸ ︷︷ ︸
momentum

)

21

where we could think the term x(k)−x(k−1) as momentum. If the stepsize α(k) and β(k) are

constant as α and β, then we call this Heavy-ball method.

7.1.1 Casestudy: quadratic function optimization

Let;s think about the problem of min 1
2x

⊤Qx where Q ≻ 0. Note that for the PD matrix, its

minimum eigenvalue m > 0. What we have shown in equation (5.2.3) is that using constant

step size for gradient algorithm yields the error bound as

e(x(k+1))

e(x(k))
≤ c.d.(Q)− 1

c.d.(Q) + 1

. For an acceleration method (Equation (7.1)), we will show that the error bound holds as

e(x(k+1))

e(x(k))
≤
√
c.d.(Q)− 1√
c.d.(Q) + 1

for some choices of α and β. Comparing the upper bound between equation (5.2.3), which

comes from the gradient method, and equation (8), which comes from the acceleration

method, provides an insight that the acceleration method could do better when the condition

number of Q is ill-conditioned. For example, if c.d.(Q) = 104, then the acceleration method

provides a much faster convergence rate.

Recall how we start the derivation of the gradient method in the Equation (5.2.3). Then

it is easy to come up with that this sort of acceleration method is good when ∇2f(x∗) > 0.

Note that the iteration number concerning error bound ϵ does not change. This is because

when we compute the iteration number of k, we are doing
(

c.d.(Q)−1
c.d.(Q)+1

)k
≤ ϵ for gradient

method and

(√
c.d.(Q)−1√
c.d.(Q)+1

)k

≤ ϵ for acceleration method. Therefore, in both cases, the

number of iterations is the same as k = O
(
log 1

ϵ

)
. What the acceleration method improves

is the constant of O.

7.2 Nestrov’s acceleration method

Let’s think about the following alternative method y(k) = x(k) + β(k)
(
x(k) − x(k−1)

)
x(k+1) = y(k) − α∇f(y(k))

(8)

The first equation of Equation (8) is using intermediate parameter y(k) and the second equa-

tion of Equation (8) is applying gradient algorithm to an intermediate point y(k). Assume

β(k) → 1 as k →∞.

Theorem 7.1.

22

8 Lecture 8

8.1 Newton method

Theorem 8.1 (Newton-like method). Consider the algorithm x(k+1) = x(k) +

α(k)∆x(k). We have the following assumptions.

1. Assume that {x(k)} → x∗ where ∇f(x∗) = 0 (FOC) and ∇2f(x∗) ≽ 0 (SOC)

holds.

2. Assume that for ∇f(x(k)) ̸= 0 for all k and

lim
k→∞

||∆x(k) − (∇2f(x∗))
−1∇f(x(k))||

||∇f(x(k))||
= 0

.

Let’s apply Armijo rule by α = 1, 0 < β < 1, 0 < σ < 1
2 . Then the two following

holds.

1. It holds that

lim
k→∞

||x(k+1) − x∗||
||x(k) − x∗||

= 0

which means {x(k)} converges superlinearly.

2. It holds that there exists k̄ ≥ 0 such that α(k) = 1 for all k ≥ k̄, which means

there is no reduction by Armijo rule after some time.

Applying the capture theorem to Theorem (8.1) guarantees the assumption of Theorem

(8.1) is satisfied. To be specific, recall capture theorem (Theorem (5.1)). It guarantees

that if x(0) is in a neighborhood of x∗, then {x(k) → x∗}, which guarantees the first assump-

tion of Theorem (8.1) is satisfied. Now let’s apply∆x(k) = ∇2f(x(k))−1∇f(x(k)), which is

a newton method. Then, the second assumption of Theorem (8.1) is also satisfied. Then

we can conclude the following theorem

Theorem 8.2 (Superlinear convergence of Newton method). Let’s assume x(−) is

close to x∗ (Capture theorem holds). Then the Newton method has a superlinear

convergence.

The superlinear convergence of Theorem 8.2 does not mean that {x(k)} converges to x∗ as

extremely fast. It’s just slightly faster than linear. However, under some extra assumptions,

we can guarantee that Newton’s method has quadratic convergence as the following Theorem

8.3.

8.2 Newton’s method when the initial point is close to the optimal

point.

We first show when the initial point x(0) is within a set Sδ := {x|||x− x∗|| ≤ δ}.

23

Theorem 8.3 (Quadratic convergence of Newton’s method). Assume that there

exist L > 0,m > 0, δ > 0 that the followings hold

1. (Existence of tensor) ||∇2f(x)−∇2f(y)||2 ≤ L||x− y||2 for ∀x, y ∈ Sδ.

2. (Strongly convex) ∇2f(x) ≥ mI for ∀x ∈ Sδ.

3. (Small δ) Lδ
2m < 1.

where Sδ := {x|||x− x∗|| ≤ δ}. Then if the initial point is x(0) is inside a set Sδ, i.e.

x(0) ∈ Sδ, then the following holds.

1. (Invariant set) x(k) ∈ Sδ.

2. (Quadratic convergence) ||x(k+1) − x∗|| ≤ L
2m ||x

(k) − x∗||2.

Proof. proof by induction. Let’s first assume that 2. (Quadratic convergence) holds. Then,

it is easy to show that 1. (Invariant set) holds. Then, all we need to show is 2. (Quadratic

convergence).

8.3 Newton’s method for arbitrary initial point

We then show for arbitrary initial point x(0), how the convergence happens with perspective

as set Dη := {x|||∇f(x)|| < η}

Theorem 8.4 (Quadratic convergence of Newton’s method). Assume that there

exist L > 0,m > 0,M > 0 that the following holds

1. (Strong convexity) mI ≼ ∇2f(x) ≼ MI for ∀x.

2. (Existence of tensor) ||∇2f(x)−∇2f(y)||2 ≤ L||x− y||2 for ∀x.

Now, run Newton’s method with the Armijo rule such that α = 1, 0 < β < 1, 0 <

σ < 1/2. Define two constants η = 3(1− 2σ)m
2

L and γ = σβη2 m
M2 . Now let’s define

a set Dη := {x|||∇f(x)|| < η}. Then the following holds

1. If x(k) /∈ Dη, then f(x(k+1))− f(x(k)) < −γ.

2. If x(k) ∈ Dη, then α(k) = 1 have quadratic convergence.

Remark 8.5 (Insight from Theorem 8.4). One important lesson from Theorem 8.4

is that σ takes a role of the tradeoff between set size and iteration from x(0) to x(k).

If σ is large, then η becomes small and γ becomes small. Note that from x(0) to x(k),

it took iteration of f(x(k)−f(x(0))
γ . This means as γ becomes small, then it takes a

large iteration to get to the set D but the set size η becomes large.

24

8.4 Stopping criterion for Newton’s method

For Newton’s method, the stopping criterion is not ||∇f(x(k)|| ≤ ϵ. Recall what we have

done to decide on stopping criteria in Subsection 6.1.2 and Subsection 6.2.2. Instead, we

will use the following criteria:

1

2
∇f(x(k))⊤

(
∇2f(x(k))

)−1

∇f(x(k)) ≤ ϵ (9)

Let’s take a look at where Equation (9) comes from. Recall that the fundamental idea

of Newton’s method is just approximating f(x) with quadradic function. Think

about the Taylor expansion as follows.

f(x(k) +∆x(k)) = f(x(k)) + f(x(k))⊤∆x(k) +
1

2
(∆x(k))⊤∇2f(x(k))(∆x(k))

Then if we take f(x(k) +∆x(k)) − f(x(k)) and recall that Newton’s method uses ∆x(k) :=

−(∇2f(x))−1∇f(x). Then we get Equation (9) = f(x(k) + ∆x(k)) − f(x(k)). This means

Equation (9) is a difference between f(x) and its quadratic approximation.

8.5 Number of iterations for Newton’s method

Theorem 8.6.

Number of iteration = iteration get to set D + iteration of converge inside D

≤ f(x(0)− f(x∗)

γ
+ log2 log2

(
2m3/L2

ϵ

)
= O

(
log log

1

ϵ

)

In Theorem 8.6, note that log log provides almost constant value regardless of ϵ.

8.6 Newton’s method for nonconvex problem and arbitrary initial

point

Recall what we have done in Subsection 8.2 and Subsection 8.3. We have assumed that

strong convexity holds, i.e. ∇2f(x) ≽ mI. Now, what if f(x) is nonconvex? Suppose that

∇2f(x) ≻ 0 does not hold. We can approach this with the following two methods:

Method1: Design corrected direction

Design ∆(k) such that ∆(k) +∇2f(x(k)) ≻ 0 holds and use it as

∆x(k) = −
(
∆(k) +∇2f(x(k))

)−1

∇f(x(k))

then we can show that ∆x(k) → 0 as k →∞. However, the problem is we don’t know how

to design ∆(k).

25

Method2: Trust region optimization

Recall that we can approximate the f(x(k+1)) = f(x(k) +∆x(k)) as follows,

f(x(k) +∆x(k)) ≈ f(x(k)) +∇f(x)⊤∆x(k) +
1

2
(∆x(k))⊤∇2f(x(k))∆x(k).

Then rather than determining ∆x(k) that minimizes f(x(k) + ∆x(k)), we solve minimizing

the approximation value as follows.

min
∆x

f(x(k)) +∇f(x(k))⊤∆x+
1

2
∆x⊤∇2f(x(k))∆x

We know that if ∇2f(x(k)) ⪰̸ 0, the objective value have it minimum as −∞. This fact

reminds us that we should do a restriction to a local region, named trust region.

Within this sense, we would like to recall “S-lemma”

Lemma 8.1 (S-lemma). If the minimization problem is quadratic, and constraints

are quadratic functions, then the problem has zero duality gap.

Let’s utilize Lemma 8.1. Think about the following quadratic optimization problem.

min
∆x

f(x(k)) + f(x(k))⊤∆x+
1

2
∆x⊤∇2f(x(k))∆x

s.t. ||∆x|| ≤ γ(k)
(10)

If we think the constraint as (∆x)⊤∆x ≤ (γ(k))2, then we could say the problem 10 satisfies

Lemma 8.1. So let’s move the constraint up to the objective function. Then we can say

problem 10 is equivalent to the following problem.

min
∆x

f(x(k)) + f(x(k))⊤∆x+
1

2
∆x⊤

(
∇2f(x(k)) + 2λ(k)I

)
∆x (11)

Then we have the following optimal solution for problem 11 as follows,

∆x∗ = −
(
∇2f(x(k)) + 2λ(k)I

)−1

∇f(x(k)).

Theorem 8.7 (Trust region optimization). If γ(k) is small enough, then

f(x(k) +∆x∗) < f(x(k)).

Note that α(k) = 1 (no step size).

8.7 Intermediate Wrap-up

• Newton’s methods is second-order method since x(k) depends on second derivatives.

• Comparison between second-order methods and first-order methods.

26

Method Second-order First-order

Convergence rate fast (log log 1/ϵ) slow (1/ϵ or log 1/ϵ)
Reference Theorem 8.6 Table 6.2.2

8.8 Second-order is always better than first-order?

When we think about the complexity, it is composed of as following

Complexity = Iteration number × Complexity per iteration

Note that computing Newton’s method is much more expensive than the gradient method

due to Hessian. Note that computing a graident has O(n) complexity but computing a

hessian has O(n3) complexity. This leads us to an important research question. Can we

design a first-order method that mimics the behavior of a second-order method? We call

this Quasi-Newton method.

9 Lecture 9

So far we have dealt with Newton’s method

x(k+1) = x(k) − α(k)∇2f(x(k))−1∇f(x(k)).

9.1 Quasi Newton method

The problem was that we needed a heavy computation to compute hessian. Then our natural

question would be can we approximate the hessian?. One way to estimate is by doing

as follows.

∇2f(xk+1)(x(k+1 − x(k)) ≈ ∇f(x(k+1))−∇f(x(k))

One new algorithm we could come up with is that let’s say we estimate the inverse of Hessian

as D(k) and find the matrix D(k)as the following equation.

D(k+1)︸ ︷︷ ︸
matrix

(∇f(x(k+1))−∇f(x(k))︸ ︷︷ ︸
vector

) = x(k+1) − x(k)︸ ︷︷ ︸
vector

Is this a well-defined problem? Let’s take a look at some cases:

1. If n = 1, then we can solve D(k+1).

2. If n > 1, we have n equations and n(n+ 1)/2 variables.

So we cannot find D(k+1) uniquely. Then what if we find an optimal D(k+1)? Some facts

are

• D(k+1) can’t be too far away from D(k). This means that we have smoothness in

Hessian. n n

27

This lets us compute D(k) as an optimization problem as follows.

min
D
||D −D(k)||Q

s.t. D = D⊤

D(∇f(x(k+1))−∇f(x(k))) = x(k+1) − x(k)

(12)

Note that 12 have a closed-form solution where D(k+1) is a function of D(k). Let q(k) :=

∇f(x(k+1)) − ∇f(x(k)) and p(k) := x(k+1) − x(k). Then for any arbitrary D(0) ≻ 0, the

closed form solution is

D(k+1) = D(k) +

(
1 +

(q(k))⊤D(k)q(k)

(p(k))⊤q(k)

)
p(k)(p(k))⊤

(p(k))⊤p(k)
− D(k)q(k)(p(k))⊤ + p(k)(q(k))⊤D(k)

(p(k))⊤q(k)

(13)

The equation (13) is derived by BFGS rule and we call this method as Quasi Newton

method. A different way to understand quasi-newton (like the half-Newton method) is

that since finding D is an optimization problem, it’s not a unique estimate of (∇2f)−1.

Therefore, we can say the following does not converge.

lim
k→∞

D(k) ̸→ lim
k→∞

∇2f(x(k))−1.

However, we can say that since we have started with x(k+1) − x(k) to estimate Hessian, the

method just worked through directional derivative as follows,

lim
k→∞

−D(k)∇f(x(k))→ lim
k→∞

−∇2f(x(k))−1∇f(x(k))︸ ︷︷ ︸
Newton’s direction

.

9.2 Intermediate wrap-up

So far, what has dealt withGradient method,Quasi-newton method,Newton method?

Note that the following only holds for strongly convex case.

Method Algorithm Convergence rate

1st order gradient alg. linear
1st order quasi-newton alg. sublinear
2nd order Newton alg. quadratic

10 Lecture 10

11 Lecture 11

11.1 Algorithms for constrained optimization

min
x∈Rn

f(x)

s.t. x ∈ X
(14)

28

11.2 Convex function

Definition 11.1 (Convex function). f(x) is a convex function if it satisfies (all

equivalent definitions):

• Zero-th order convexity condition: f(αx+(1−α)y) ≤ αf(x)+ (1−α)f(y) for

∀x, y ∈ Rn,∀α ∈ [0, 1].

• First-order convexity condition: f(y) ≥ f(x) +∇f(x)⊤(y − x) for ∀x, y ∈ Rn.

• Second-order convexity condition: ∇2f(x) ≽ 0 for ∀x ∈ Rn.

11.3 m−Strongly convex function

Definition 11.2 (m-strong convex function). f(x) is a m-strong convex function

if it satisfies (all equivalent definitions):

• ∇2f(x) ≽ mI for ∀x ∈ Rn where m > 0.

• f(y) ≥ f(x) +∇f(x)⊤(y − x) +
m

2
||x− y||22︸ ︷︷ ︸

global quadratic under-estimator

for ∀x, y ∈ Rn.

• f(αx+ (1− α)y) +
1

2
mα(1− α)||x− y||2︸ ︷︷ ︸
quadratic function

≤ αf(x) + (1− α)f(y)

• (∇f(x)−∇f(y))⊤(x− y)︸ ︷︷ ︸
monotone operator

≥ m||x− y||2 for ∀x, y.

For second bullet point, note that f(x)+∇f(x)⊤(y−x)+m
2 ||x−y||

2
2 is a global quadratic

under-estimator, namely, the function has some curvature depending on m. For the fourth

bullet point, note that its definition means ∇f(·) is a monotone operator.

11.4 Convex set

Definition 11.3 (Convex set). We define a set S as a convex set if αx+(1−α)y ∈ S

for any x, y ∈ S and any α ∈ [0, 1]. Namely, its segment is also in the set.

11.5 m−Strongly convex set

Definition 11.4 (m−Strongly convex set). We define a set S is a m-strongly convex

set if αx+ (1− α)y + 1
2α(1− α)||x− y||2z ∈ S for any x, y ∈ S, any α ∈ [0, 1], and

any z where ||z|| ≤ 1.

Note that the convex set is a segment and the m-strongly convex set is a boundary that

has a curvature. One equivalent definition of the m-strongly convex set is given as follows

29

Definition 11.5 (Equvalent definition of m−Strongly convex set). For ∀x, y ∈ S

and for a∀α ∈ [0, 1], the ball B(αx+ (1− α)y︸ ︷︷ ︸
center

,
m

2
α(1− α)||x− y||2)︸ ︷︷ ︸

radius

∈ S

11.6 When f is convex, X is convex

Recall that in Lecture 2, we solve unconstrained optimization problem and derive FOC

(necessary), and SOC (necessary, sufficient). In this subsection, we derive similar property

as follows.

Theorem 11.6. Consider the problem min f(x) such that x ∈ X where f(·) is a

convex function and X is a convex set. Then every local min is a global min.

Proof. to be continued.

11.7 When f is arbitrary, X is convex

Recall that in Lecture 2, we solve unconstrained optimization problem and derive FOC

(necessary), and SOC (necessary, sufficient). In this subsection, we derive similar properties

for constrained problem when f is an arbitrary function and X is a convex set.

11.7.1 FOC necessary condition

Theorem 11.7 (FOC necessary). If X is a convex set and f(x) is arbitrary, and if

x∗ is a local min, then ∇f(x∗)
⊤(x− x∗) ≥ 0 for all x ∈ X.

Proof. to be continued.

Note that in an arbitrary function f , we have a new term x − x∗ (Recall Theorem 2.1

for unconstrained optimization problem). Therefore, for further analysis, let’s define new

terms as follows. Before, let’s recall the definition of cone K.

Definition 11.8 (Cone). We define K as a cone if αx ∈ K for ∀x ∈ K and ∀α ≥ 0.

Cone of feasible direction, FX(x∗).

Definition 11.9 (Cone of feasible direction). For given convex set X and a point

x∗, we define FX(x∗) := {∆x | ∆x = α(x− x∗)} for some α ≥ 0 and x ∈ X.

30

Tangent cone at x∗, TX(x∗).

Definition 11.10 (Tangent cone at x∗). For given convex set X and a point x∗, we

define TX(x∗) := {∆x | ∆x = 0 or ∃{x(k)}∞k=1 ⊂ X s.t. x(k) ̸= x∗, limk→∞ x(k) =

x∗, limk→∞
x(k)−x∗

||x(k)−x∗||
= ∆x

||∆x||}.

Normal cone at x∗, N∗(x∗)

Definition 11.11 (Normal cone at x∗, NX(x∗).). For given convex set X and a

point x∗, we define NX(x∗) := {∆y | ∆y⊤∆x ≤ 0, ∀∆x ∈ TX(x∗)}.

Within using the above definition, let’s take a look at how the FOC could be rewritten

∇f(x∗)
⊤ (x− x∗)︸ ︷︷ ︸

×α

≥ 0, ∀x ∈ X

⇐⇒ ∇f(x∗)
⊤∆x ≥ 0, ∀∆x ∈ FX(x∗)

⇐⇒ ∇f(x∗)
⊤ x− x∗

||x− x∗||︸ ︷︷ ︸
take limit for a sequence {x(k)}

≥ 0

⇐⇒ ∇f(x∗)
⊤∆x ≥ 0, ∀∆x ∈ TX(x∗)

⇐⇒ −∇f(x∗) ∈ NX(x∗)

Note that for unconstrained problem, i.e. X = Rn, then NX(x∗) = 0, so ∇f(x∗) = 0. Now,

using the definitions of cones above, let’s come up with a geometric intuition of FOC.

“ There is no feasible descent direction”. “The optimality implies that there is no feasible

descent direction”.

Note that if X is non-convex, then the above statement is not true. there exists x that

satisfies ∇f(x∗)
⊤(x − x∗) < 0. This violates FOC. So ∇f(x∗)

⊤(x − x∗) ≥ 0 for ∀x ∈ X

does not work.

However, it is easy to check that ∇f(x∗)
⊤∆x ≥ 0 works for ∀∆x ∈ TX(x∗). This

observation leads us to SOC’s necessary condition.

11.7.2 SOC necessary condition

Theorem 11.12 (SOC necessary condition). Assume X is a context set and f is a

arbitrary function. If x∗ is a local min, then ∆x⊤∇2f(x∗)∆x ≥ 0 holds for ∀∆x

such that ∆x ∈ FX(x∗) and ∇f(x∗)
⊤∆x = 0 holds. ??

Note that the above condition could be regarded as restricted Hessian.

31

Theorem 11.13 (SOC sufficient condition). Assume X is a convex set and f(x) is

arbitrary function. x∗ is a local min if it satisfies

1. FOC

2. ∆x⊤∇2f(x∗)∆x > 0 for ∀∆x such that ∆x ̸= 0, ∇f(x∗)
⊤∆x = 0, ∆x ∈

TX(x∗).

??

12 Lecture 12

12.1 How to solve a constrained optimization problem?

Since this lecture started, we have been interested in solving the unconstrained problem

min f(x). So we derived FOC, SOC condition in Lecture 11. Then we came up with how

to solve it by the gradient method, Newton method, and coordinate gradient method. In

the same sense, starting from lecture 11, we have dealt with how to solve constrained opti-

mization problem. Then, we have come up with corresponding FOC, and SOC conditions

in Lecture 11. How we are concerned with how to solve it.

First, recall the problem setting as follows.

min f(x)← arbitrary function

s.t. x ∈ X ← convex set

We are utilizing the descent algorithm as

x(k+1) = x(k) + α(k)∆x(k)

. Note that ∆x(k) is a feasible direction, i.e. ∆x(k) ∈ FX(x(k)). Recall the definition in

Lecture 11. Therefore, to choose a good direction, note that ∆x(k) should satisfy following

two properties

1. (Feasible direction) ∆x(k) ∈ FX(x(k))

2. (Descent direction) ∆f(x(k))⊤∆x(k) < 0

One possible choice that we can make is ∆x(k) = x̄(k) − x(k) for any point x̄(k) ∈ X . Since

x̄(k) ∈ X, then we can conclude that ∆x(k) ∈ FX(x(k)) holds.

Then, we have x(k+1) = x(k) + α(k)(x̄(k) − x(k)) = (1 − α(k))x(k) + α(k)x̄(k). Since

x(k), x̄(k) ∈ X then x(k+1) ∈ X since X is a convex set. Now, how to find α(k)?

1. Limited line search : find α(k) : minα f(x(k) + α∆x(k)) such that 0 ≤ α ≤ 1.

2. Constant stepsize α(k) = 1

3. Armijo rule

32

12.2 Frank-wolfe

Frank-Wolfe method is a conditional gradient method. It finds the most descent direction

which is feasible direction. It finds the next point x(k+1) by solving the following optimiza-

tion problem.

min
x

f(x(k))⊤(x− x(k))

s.t. x ∈ X ← compact set
(15)

then we let the optimal solution x∗ as x̄(k) and let ∆x(k) = x̄(k) − x(k). Note that we need

a compact set assumption to make sure x̄(k) is not infinity.

• insert figure

12.3 Remarks on Frank-Wolfe’s complexity

However, the problem is that to find x̄(k), we need to solve additional optimization subprob-

lems. Please note that the most expensive part of the iteration update is solving for x̄(k). If

solving the suboptimization problem (15) takes a long time, then this method is not helpful.

Hopefully, note that the suboptimization problem (15)’s objective function is linear to x.

This means that X has a nice structure that allows us to compute the closed-form solution.

Example 12.1. Let we are solving a min f(x) over a simplex where X := {x | x ≥
0,
∑n

i=1 xi = r. Then suboptimization problem (15) is given as

min
x

∂f(x(k))

∂xi
(xi − x

(k)
i)

s.t.

n∑
i=1

xi = r, x1, · · · , xn ≥ 0

The closed form solution of above problem is x̄
(k)
1 , · · · , x̄(k)

j−1, x̄
(k)
j+1, · · · , x̄

(k)
n = 0 and

x̄
(k)
j = r where j = argmini=1,··· ,n

∂f(x(k))
∂xi

.

12.4 Convergence

Now, let’s talk about convergence. Recall we are handling x(k+1) = x(k) + α(k)(x̄(k) − x(k))

where x̄(k) ∈ X. We need to make sure that x̄(k)−x(k) that is descent is not asymptotically

orthogonal to ∆f(x(k)). This means that {x̄(k) − x(k)} should be gradient related (Defi-

nition 3.3). Just recall the definition of gradient-related. That means for any subsequence

{x(k)}k ∈ K that converges to a point that satisfying FOC,

• The corresponding sequence {x̄(k) − x(k)}k∈K is bounded

• lim supk→∞,k∈K ∇f(x(k))⊤(x̄(k) − x(k)) < 0

Theorem 12.2. If {x̄(k) − x(k)} is gradient related and α(k) is designed based on

limited line search or Armijo rule, then every limit point of {x(k)} satisfies FOC. We

call that point a stationary point.

33

12.5 Frank-worlfe: gradient related

Theorem 12.3. Frank-Wolfe method guarantees gradient-related directions.

Proof. suppose {x(k)}k∈K converges to a non-stationary point x̃. Recall the gradient-related

definition (Definition 3.3). We need to prove the following:

1. lim supk∈∞,k∈K ||x̄(k) − x(k)|| <∞

2. lim supk→∞,k∈K ∇f(x(k))⊤(x̄(k) − x(k)) < 0

1st point is true since x̄(k), x(k) ∈ X and X is a compact set. For the 2nd point. Note

that x̄(k) is the optimal point. so ∇f(x(k))⊤(x̄(k) − x(k)) ≤ ∇f(x(k))⊤(x − x(k)) holds for

∀x ∈ X. Now, take a limit on k →∞, k ∈ K, then we got

lim sup
k→∞,k∈K

∇f(x(k))⊤(x̄(k) − x(k)) ≤ ∇f(x̃)⊤(x− x̃), ∀x ∈ X.

Since x̃ is not a stationary point, there exists y such that

∇f(x̃)⊤(y − x̃) < 0

holds. Therefore, we got

lim sup
k→∞,k∈K

∇f(x(k))⊤(x̄(k) − x(k)) < 0

12.6 Frank-wolfe: find stationary point

Theorem 12.4. Assume ||∇f(x) − ∇f(y)|| ≤ L||x − y|| holds for ∀x, y ∈ X.

We don’t need to use the Armijo rule or Line search. Just pick α(k) =

min
{
1, ∇f(x(k))⊤(x̄(k)−x(k))

L||x̄(k)−x(k)||

}
. Then, every limit point of {x(k)} is a stationary point.

Proof. To be continue

12.7 Frank-wolfe when f is convex

Before, let’s define how hard the problem is to solve. Intuitively, it’s related to how large

our compact set X is. So we define the diameter of set X as follows.

D := max
x,y∈X

||x− y||

34

Theorem 12.5. We are solving a constrained problem: min f(x) where x ∈ X that

X is a compact set. We are using an iterative method as x(k+1) = x(k) +α(k)(x̄(k)−
x(k)) and compute x̄(k) by an Frank-wolfe method. Assume

1. f is convex

2. ||∇f(x)−∇f(y)|| ≤ L||x− y|| for x, y ∈ X

3. Let D := maxx,y∈X ||x− y||

Suppose we are solving unconstrained problem. Now, set stepsize α(k) = 2
2+k . Then

we have

f(x(k))− f∗ ≤
2LD2

k + 2
, ∀k

which means to guarantee f(x(k))− f∗ϵ, we need

f(x(k))− f∗ = O
(
1

ϵ

)
complexity.

Proof. First, use that ||∇f(x)−∇f(y)|| ≤ L||x− y|| for x, y ∈ X imply that the function is

upper bounded by the quadratic function which its coefficient is L (Assumption 2). That

is

f(x(k+1)) = f
(
x(k) + α(k)(x̄(k) − x(k))

)
≤ f(x(k)) +∇f(x(k))⊤

(
α(k)(x̄(k) − x(k))

)
+

L

2

∣∣∣∣∣∣α(k)(x̄(k) − x(k))
∣∣∣∣∣∣ (16)

holds. Also, since the x̄(k) is the minimizer of ∇f(x(k))⊤(x̄(k)−x(k)) for x ∈ X, the following

∇f(x(k))⊤(x̄(k) − x(k)) ≤ ∇f(x(k))⊤(x∗ − x(k)) (17)

holds where x∗ is the optimal solution. Also, due to the convexity of f(x) (Assumption

1), we have

∇f(x(k))⊤(x∗ − x(k)) ≤ f(x∗)− f(x(k)) (18)

Now, combine Equations (16),(17), and (18), we have the following (Assumption 3)

f(x(k+1)) ≤ f(x(k)) + α(k)(f∗ − f(x(k))) +
L

2
(α(k))2

∣∣∣∣∣∣x̄(k) − x(k)
∣∣∣∣∣∣2

≤ f(x(k)) + α(k)(f∗ − f(x(k))) +
L

2
(α(k))2D2

Arrange the above inequality as follows.

f(x(k+1))− f∗ ≤ (1− α(k))(f(x(k))− f∗) +
L

2
(α(k))2

∣∣∣∣∣∣x̄(k) − x(k)
∣∣∣∣∣∣2 .

35

Now, choose α(K) = 2
2+k . By induction, we have

f(x(k))− f∗ = O (1/k)

or iteration complexity as O (1/ϵ)

13 Lecture 13

Let’s wrap up what we have done so far.

min f(x) min f(x) s.t. x ∈ X

f convex O(1/ϵ) (Theorem 6.2) O(1/ϵ) (Theorem 12.5)
f strongly convex O(log (1/ϵ)) (Subsection 6.1) ?

One guess that the iteration complexity for the contained problem when strongly con-

vexity holds is that it can’t be better than O(log (1/ϵ)). The following theorem tells us the

lower bound of iteration complexity exists for this case.

13.1 Frank-wolfe: when f is strongly convex

Theorem 13.1. There is a class of problems where f(x) is quadratic & strongly

convex, and set X is described by linear inequalities such that the sequence generated

by Frank-Wolfe satisfies

f(x(k))− f∗ ≥
1

k1+ϵ
, ∀ϵ > 0

and infinitely many values of k.

Then, how can we attain some reasonable iteration complexity? In the case of X being

a strongly convex set, we will show that Frank-Wolfe attains O(log (1/ϵ)) complexity in the

following theorem.

36

13.2 Frank-wolfe: when f is convex & X is strongly convex

Theorem 13.2. Assume

1. f is convex.

2. minx∈X ||∇f(x)|| > 0

3. ||∇f(x)−∇f(y)|| ≤ L||x− y|| for x, y ∈ X

4. X is a strongly convex set.

Then, if the stepsize is constant and small, we could guarantee linear convergence

for the Frank-Wolfe method. Namely, the iteration complexity is

O
(
log

(
1

ϵ

))

Remark 13.3 (Remark on Theorem 13.2). Theorem 13.2 doesn’t require f(x) to

be strongly convex but an optimization sub-problem should be solved O
(
log
(
1
ϵ

))
times.

Proof of Theorem 13.2. Recall the definition of a strongly convex set (Definition 11.3) (Assumption

4). Then set α = 1/2 where α is defined in Definition 11.3. Then we can say

1

2
x(k) +

1

2
x̄(k) +

1

2
m
1

2

(
1− 1

2

) ∣∣∣∣∣∣x(k) − x̄(k)
∣∣∣∣∣∣2 z︸ ︷︷ ︸

y(k)

∈ X, ||z|| ≤ 1 (19)

holds. We let the LHS of (19) as y(k). Also since we are using the Frank-Wolfe method, we

can say

∇f(x(k))⊤(x̄(k) − x(k)) ≤ ∇f(x(k))⊤(y(k) − x(k)) (20)

holds by its definition that x̄(k) is the optimal point. Now, pick

z = − ∇f(x
(k))

||∇f(x(k))||
.

Let use define the constant C := minx∈X ||∇f(x)|| (Assumption 2). Insert y(k) of Equation

(19) into the Equation (20), then we got

∇f(x(k))⊤(x̄(k) − x(k)) ≤ 1

2
∇f(x(k))⊤

(
x̄(k) − x(k)

)
− mC

8

∣∣∣∣∣∣x̄(k) − x(k)
∣∣∣∣∣∣2 (21)

Also, note that the following inequality holds.

∇f(x(k))⊤(x̄(k) − x(k)) ≤ ∇f(x(k))⊤(y(k) − x(k)) (22)

≤ f(x∗)− f(x(k)) (23)

37

Inequality (22) comes from the definition of the Frank-Wolfe method and Inequality (23)

comes from the f convexity assumption (Assumption 1). Combine Equation (21) and

Inequality (23), then we have the following inequality.

∇f(x(k))⊤(x̄(k) − x(k)) ≤ 1

2

(
f(x∗)− f(x(k))

)
− mC

8

∣∣∣∣∣∣x̄(k) − x(k)
∣∣∣∣∣∣2 (24)

Also, by Assumption 2, the function value f(x(k+1)) is bounded by quadratic function

(quadratic over-estimator) as follows.

f(x(k+1))− f∗ ≤ f(x(k))− f∗ +∇f(x(k))⊤
(
α(k)

)(
x̄(k) − x(k)

)
+

L

2

∣∣∣∣∣∣α(k)
(
x̄(k) − x(k)

)∣∣∣∣∣∣
(25)

Finally, combine Inequalities (24) and (25), then we have

f(x(k+1))− f∗︸ ︷︷ ︸
e(k+1)

≤
(
f(x(k))− f∗

)
︸ ︷︷ ︸

e(k)

(
1− α(k)

2

)
−
∣∣∣∣∣∣x(k) − x̄(k)

∣∣∣∣∣∣2 α(k)

−Lα(k)

2
+

mC

8︸ ︷︷ ︸
TermI

 .

(26)

Note that Term I of Equation (26) is positive if α(k) = α(constant)=small. Then, if TermI

is positive, we could say

e(k+1) ≤ e(k)
(
1− α

2

)
where 1 − α

2 ∈ (0, 1). So this is linear convergence (Definition 5.2 and Theorem 5.3).

Recall that if linear convergence holds, then it guarantees O (log (1/ϵ)) (See Subsection 6.1

how linear convergence is related with log iteration).

13.3 Gradient Projection method

x(k+1) = x(k) + α(k)(x̄(k) − x(k))

x̄(k) = PX

(
x(k) − s(k)∇f(x(k))

) (27)

Note that α(k), s(k) are step sizes, PX is a projection operator. We define projection operator

PX as

PX(y) := argmin
x∈X

||x− y||2.

Basically, PX conducts a minimization over a quadradic function over X. The basic idea is

that we use the gradient method on x(k) to find a better point with respect to f()̇. It may

not be feasible, so we project it onto X to get a feasible point x̄(k), and then get a feasible

direction x̄(k) − x(k).

Note that the projection constraint could be rewritten as follows,

x̄(k) = argmin
x∈X

(∣∣∣∣∣∣x− (x(k) − s(k)∇f(x(k))
)∣∣∣∣∣∣2) (28)

= argmin
x∈X

(∣∣∣∣∣∣x− x(k)
∣∣∣∣∣∣2 + 2s(k)∇f(x(k))⊤

(
x− x(k)

)
+
(
s(k)

)2 ∣∣∣∣∣∣∇f(x(k))
∣∣∣∣∣∣2) (29)

= argmin
x∈X

(
1

2s(k)

∣∣∣∣∣∣x− x(k)
∣∣∣∣∣∣2 +∇f(x(k))⊤

(
x− x(k)

))
(30)

38

Look at the Equation 30. This allows us to interpret the Gradient Projection method is

actually a Regularized Frank-Wolfe version. To be specific. Compare two methods as

follows.Frank-Wolfe : minx∈X

(
∇f(x(k))⊤

(
x− x(k)

))
Gradient Prjection method : minx∈X

(
∇f(x(k))⊤

(
x− x(k)

)
+ 1

2s(k)

∣∣∣∣x− x(k)
∣∣∣∣2)

13.4 Remarks on Gradient Prjection method’s complexity

However, there is also one problem (as we have talked in previous subsection 12.3, to make

Gradient Prjection method to be useful, the suboptimizatio problem (solving quadratic

optimization problem over compact set X) should be much easier than solving original

problem.

Example 13.4. Let a compact set X := {x | ai ≤ xi ≤ bi, i = 1, · · · , n}. Then it

is easy to check that projection operator PX(y) has a closed form solution as

ith entry =


ai if yi ≤ ai

bi if yi ≥ ai

yi if ai ≤ yi ≤ bi

13.5 Special case: Projected Gradient method

Recall the method (27). When α(k) = 1, then we have x(k+1) = x̄(k) = 1 which makes

shrinkage to the following method

x(k+1) = PX

(
x(k) − s(k)∇f(x(k))

)
(31)

What this implies is that we are using regular gradient method, but whenever the point

gets outside of the sets, the algorithm projects it back into X.

13.6 Properties of projection operator

To do some convergence analysis, let us first investigate some mathematical properties of

projection operator PX(y).

39

Proposition 13.5 (properties of projection operator PX(y)). The projection op-

erator PX(y) := argminx∈X ||x − y|| where X is a compact set has the following

properties:

1. PX(y) is unique.

2. z is projection of y on X iff (x− z)⊤(y − z) ≤ 0 for ∀x ∈ X.

3. For y1, y2 ∈ Rn, it holds that

||PX(y1)− PX(y2)|| ≤ ||y1 − y2||

4. FOC of constrained optimization problem (Theorme 11.7) is same as

PX (x∗ − s∇f(x∗)) = x∗

Let’s prove the 4th property of Proposition 13.5. Recall the FOC of constarined problem

is that for a point x∗, ∇f(x∗)
⊤ (x− x∗) ≥ 0 holds for ∀x ∈ X. This means

−s∇f(x∗)
⊤ (x− x∗) ≤ 0

holds for ∀x ∈ X and any arbitrary s > 0. This could be rewrited as follows.((
x∗ − s∇f(x∗)

⊤)− x∗
)
(x− x∗) ≤ 0

Then by 2nd property of Proposition 13.5, regard y =
(
x∗ − s∇f(x∗)

⊤) and z = x∗. Then

we have

PX (x∗ − s∇f(x∗)) = x∗

Lemma 13.1. By property 4 of Proposition 13.5, the Gradient projection methods

stop if and only if the algorithm finds a stationary point.

13.7 Step size of Gradient projection method

As we have discussed in Subsections 2.3 and 3.1, stepsizes of gradient projection method

also could be found by following method. Just note that we have additional step size s(k)

beside α(k).

1. Limited line search

• s(k) = s = constant

• α(k) : minα∈[0,1] f(x
(k) + α(x̄(k) − x(k))).

2. Armijo rule along the feasible direction

• s(k) = s = constant

• α(k) : 1→ β → β2 → · · · s.t. f(x(k+1))− f(x(k)) ≤ σα(k)∇f(x(k))⊤(x̄(k) − x(k))

40

14 Lecture 14

14.1 Convergence analysis of gradient projection methods (Quadratic

function)

Let’s investigate convergence rate of projection gradient method (Equation (31)) when f(x)

is quadradic function. We investigate the following problem

min
1

2
x⊤Qx− b⊤x, Q > 0

s.t. x ∈ X
(32)

Let us assume that α(k) = 1, s(k) = s. Then we have constant step size of s as follows.

x(k+1) = PX

(
x(k) − s∇f(x(k))

)
(33)

Then, let us define error e(k+1) := ||x(k+1) − x∗||. Then we have

||x(k+1) − x∗|| =
∣∣∣∣∣∣PX

(
x(k) − s∇f(x(k))

)
− PX (x∗ − s∇f(x∗))

∣∣∣∣∣∣
≤
∣∣∣∣∣∣(x(k) − s∇f(x(k)))− (x∗ − s∇f(x∗))

∣∣∣∣∣∣
Thefirst and second inequality holds by the property 3 and 4 of Projection PX operator

(Proposition 13.5). Then, since our f(x) = 1
2x

⊤Qx − b⊤x, we have ∇f(x) = Qx − b.

Therefore, we have

||x(k+1) − x∗|| ≤
∣∣∣∣∣∣(I − sQ)(x(k) − x∗)

∣∣∣∣∣∣
≤ max{|1− λmin(Q)|, |1− λmax(Q)|}||x(k) − x∗||

Note that further analysis is same as what we have done in unconstrained optimization

problem (Subsection 5.2.3). Therefore, if we optimizae over s, then we have

e(k+1)

e(k)
≤ c.d.(Q)− 1

c.d.(Q) + 1

Then, what’s the difference between unconstrained (subsection 5.2.3) problem and con-

strained problem (Subsection 14.1)? The main difference is that we have to compue gradient

for unconstrained problem, but we have to additionally solve optimization subproblem at

every iteration for constrained case.

14.1.1 What if c.d.(Q) is large?

We can change the variables as

x⊤Qx→ (Q1/2x)⊤(Q1/2x)

Let y(k) = Q1/2x(k). Then, let’s say we are solving minx f(x) → miny h(y) where h(y) =

f(Q−1/2y) and the constraint x ∈ X → y ∈ Y . Then, we can rewrite the gradient projection

41

method on y (Equation (27)) as follows.

y(k+1) = y(k) + α(k)(ȳ(k) − y(k))

ȳ(k) = PY

(
y(k) − s(k)∇h(y(k))

) (34)

where Y = {y | Q−1/2y ∈ X}. Now use that x(k) = Q−1/2y(k), x̄(k) = Q−1/2ȳ(k). Then we

can write exact transformation of Equation (34) as follows.

x(k+1) = x(k) + α(k)(x̄(k) − x(k))

x̄(k) = argmin
x∈X

(
∇f(x(k))⊤(x− x(k)) +

1

2s(k)
(x− x(k))⊤Q(x− x(k))

)
(35)

Recall how we derived Equation (30) for the derivation of Equation 35. If the new condition

number is 1, then Equation 35 guarantees convergence in one iteration.

14.2 Convergence analysis of gradient projection methods (general

function)

Let’s go to the convergence analysis of general case. Let’s recall that we are solving con-

straneind optimization problem min f(x) over x ∈ X. We have changed the value to and

we solve it using the gradient projection method as

x(k+1) = x(k) + α(k)(x̄(k) − x(k))

x̄(k) = PX

(
x(k) − s(k)∇f(x(k))

)
The projection term could be rewritten in a closed form (recall Equation (30)) as

x(k+1) = x(k) + α(k)(x̄(k) − x(k))

x̄(k) = argmin
x∈X

(
∇f(x(k))⊤(x− x(k)) +

1

2s(k)
(x− x(k))⊤∇2f(x(k))(x− x(k))

)
(36)

Let’s think about some special case where α(k) = s(k) = 1. Then we have

x(k+1) = argmin
x∈X

(
∇f(x(k))⊤(x− x(k)) +

1

2
(x− x(k))⊤∇2f(x(k))(x− x(k))

)
.

This is same as just minimizing over the direction ∆x(k) = x − x(k). Recall that Equation

36 is same as
min
∆x

quadratic approximation of f(x(k) +∆x)

s.t. ∆x = x− x(k), x ∈ X
(37)

42

Theorem 14.1. Consider the constrained optimization problem

min f(x)

s.t. x ∈ X

and we are solving it using gradient projection method as

x(k+1) = x(k) + α(k)(x̄(k) − x(k))

x̄(k) = PX

(
x(k) − s(k)∇f(x(k))

)
If we use Armijo rule or Limited line search for α(k) and pick s(k) to be arbitrary

positive constant, then every limit point of {x(k)} is a stationary point (FOC).

Theorem 14.2. Consider the constrained optimization problem

min f(x)

s.t. x ∈ X

and we are solving it using gradient projection method as

x(k+1) = x(k) + α(k)(x̄(k) − x(k))

x̄(k) = PX

(
x(k) − s(k)∇f(x(k))

)
If we use pick α(k) = 1 and s(k) based on Armijo rule, then every limit point of {x(k)}
is a stationary point.

Theorem 14.3 (Projection gradient method). Use the algorithm x(k+1) = PX(x(k)−
s∇f(x(k))) to solve constrained problem (which is special case when α(k) = 1).

Assume that

• ||∇f(x)−∇f(y)|| ≤ L||x− y|| for ∀x, y ∈ X.

• 0 < s < 2
L

then every limit point of {x(k)} is stationary. Note that this is similar to Theorem

4.3.

Proof. Recall that we have x(k+1) = PX(x(k) − s∇f(x(k))). Then by second property of

Proposition 13.5. We have the following inequality(
x− x(k+1)︸ ︷︷ ︸

z

)((
x(k) − s∇f(x(k)

)
︸ ︷︷ ︸

y

−x(k+1)︸ ︷︷ ︸
z

)
≤ 0.

43

for ∀x ∈ X. Now, since x(k+1) ∈ X for ∀k ≥ 0, let x = x(k) then we have

∇f(x(k))⊤(x(k+1) − x(k)) ≤ −1

s
||x(k+1) − x(k)||2 (38)

Also, note that Lipschitiz continuous assumption on the gradient means that the function

f is upperbounded by quadratic function whose coefficient is L as follows (Assumption 1)

f(x(k+1)) ≤ f(x(k)) +∇f(x(k))⊤(x(k+1) − x(k)) +
L

2
||x(k+1) − x(k)||2 (39)

Combine Equations (38) and (39), then we have

f(x(k+1))− f(x(k)) ≤
(
L

2
− 1

s

)
||x(k+1) − x(k)||2 (40)

Note that the coefficient L
2 −

1
s ≤ 0 since s < 2

L (Assumption 2). Then we have

f(x(k+1)) ≤ f(x(k))

for all k ≥ 0. Now, consider a subsequence corresponding to a limit point of {x(k)}∞k=1, i.e.

{x(k)}k∈K → x∗ where x∗ is a limit point. Now, as k → ∞, the left side of inequality (40)

goes to 0, and the right side of inequality (40) is ≤ 0. This means the RHS of inequality

(40) should also convergres to 0 as k →∞. This means x(k+1)−x(k) → 0 which also means

PX

(
x(k) − s∇f(x(k))

)
− x(k) → 0 as k →∞.

Take the limit then we have

PX (x∗ − s∇f(x∗)) = x∗

where x∗ satisfies FOC.

Theorem 14.4 (Convergence rate of projected gradient method). Use the algorithm

x(k+1) = PX(x(k) − s∇f(x(k))) to solve constrained problem (which is special case

when α(k) = 1). Assume

1. ∇2f(x) ⪰ mI where m > 0 for ∀x ∈ X.

2. ||∇f(x)−∇f(y)|| ≤ L||x− y|| for ∀x, y ∈ X.

Then, the optimal convergence rate of error is given as

||x(k+1) − x∗|| ≤
√

1− m

L
||x(k) − x∗||

when s = 1
L (optimal means optimal upper bound→ minmax). Note that L contains

the information of “ compact set of X” so, we could regard m
L = 1

c.d. .

Proof. If s = 1
L , then we have

x(k+1) = PX

(
x(k) − 1

L
∇f(x(k))

)

44

. Then by second property of Proposition 13.5, we have

((x(k) − 1

L
∇f(x(k))− x(k+1))⊤(x− x(k+1)) ≤ 0, ∀x ∈ X

Now, pick x = x∗, then we have

∇f(x(k))⊤(x(k+1) − x∗) ≤ L(x(k) − x(k+1))⊤(x(k+1) − x∗) (41)

Also, we have

0 ≤ f(x(k+1))− f(x∗)

= f(x(k+1))− f(x(k))︸ ︷︷ ︸
A

+ f(x(k))− f(x∗)︸ ︷︷ ︸
B

≤ ∇f(x(k))⊤(x(k+1) − x(k)) +
L

2
||x(k+1) − x(k)||2︸ ︷︷ ︸

quadratic over estimator of A

+∇f(x(k))⊤(x(k) − x∗)−
m

2
||x(k) − x∗||2︸ ︷︷ ︸

quadratic under estimator of B

≤ ∇f(x(k))⊤(x(k+1) − x∗) +
L

2
||x(k+1) − x(k)||2 − m

2
||x(k) − x(k)||2

Now, use Equation (41) and we have

0 ≤ L(x(k) − x(k+1))⊤(x(k+1) − x∗) +
L

2
||x(k+1) − x(k)||2 − m

2
||x(k) − x(k)||2 (42)

Now, let w(k+1) := x(k+1) − x∗, w
(k) := x(k) − x∗ and define the error term as

e(k+1) := ||x(k+1) − x∗||

Then, we have

0 ≤ L

2
||w(k+1) − w(k)||2 − m

2
||w(k)||+ L(w(k) − w(k+1))⊤w(k+1)

= (
L

2
− m

2
)(e(k))2 − L

2
(e(k+1))2

Therefore, we finally have

e(k+1) ≤
√
1− m

L
e(k)

14.3 Proximal algorithms: nonsmooth optimization

Let’s think about the following problem setting.

min f(x)→ convex function

s.t. x ∈ X → convex set
(43)

45

Now, what proximal algorithm do is adding a quadratic term when updating the function.

x(k+1) = argmin
x∈X

(
f(x) +

1

2α(k)

∣∣∣∣∣∣x− x(k)
∣∣∣∣∣∣2︸ ︷︷ ︸

proximal term - it regularizes x with respect to x(k)

)
(44)

So what’s the point of adding quadratic term? The followings are the main ideas of its

advantage

1. If f(x) is not twice differentiable,

∇2

(
f(x) +

1

2α(k)
||x− x(k)||2

)
⪰
(
min
x∈X

eig
(
∇2f(x)

)
+

1

α(k)

)
I, ∀x ∈ X.

Note that α(k) makes the objective strongly convex even if f(x) ̸= strongly convex,

which means minx∈X eig
(
∇2f(x)

)
= 0.

2. Assume f(x) is not differentiable. Let us define Moreav envelop as follows.

Mα,f (z) := inf
x∈X

(
f(x) +

1

2α
||x− z||2

)
, α > 0, z ∈ Rn. (45)

Also, later on we will define Prox operator as follows.

Proxα,f (z) := argmin
x∈X

(
f(x) +

1

2α
||x− z||2

)
, z ∈ Rn (46)

Note that z ∈ Rn not z ∈ X.

We first go over some properties of Moreav envelope as follows.

14.4 Moreav envelope

The followings are the properties of Monreav envelope Mα,f (z), z ∈ Rn. Recall that we

have defined Moreav envelope in Equation (45).

1. Mα,f (z) is convex and differentiable with ∀z ∈ Rn.

(proof) Note that if we let

g(x, z) = f(x) +
1

2α
||x− z||2

then g(x, z) is jointly convex in (x, z). Then since

Mα,f (z) = inf
x∈X

g(x, z)

and g is jointly convex and we are minimizing over convex set X, therefore Mα,f (z)

is convex set.

2. Prox operator: we let its optimal solution as

Proxα,f (z) = argmin
x∈X

g(x, z).

46

Then, Proxα,f (z) exists and is unique at every point z. For shorthand notation, we

write as

Proxα,f (z) = x(z).

3. Take minimum over x and take derivative w.r.t z is same as take derivative

w.r.t z and insert argmin x solution. Namely,

∇zMα,f (z) = ∇zg(x, z)
∣∣
x=x(z)

(47)

holds.

This is the same as saying

∂

∂z

(
min
x∈X

g(x, z)

)
=

∂

∂z
g(x, z)

∣∣∣
x=x(z)

.

Let’s think about the special case where f is differentiable and X is the entire space.

Then min g(x, z) goes to ∇xg(x, z) = 0 since this is unconstrained problem, then we

have ∇f(x(z)) + x(z)−z
α = 0. This could be also translated to

∇zMα,f (z) = ∇f(projα,f (z)), ∀z ∈ Rn

This means same derivative with only change point z → Prox(z)

4. Moreav envelop is under bounded by constant and upper bounded by func-

tion as

inf
x∈X

f(x) ≤Mα,f (z) ≤ f(z), ∀z ∈ X.

holds. The proof is simple. First recall the definition of Moreav envelop (Definition

45) as follows.

Mα,f (z) = inf
x∈X

(
f(x) +

1

2α
||x− z||2

)
, α > 0, z ∈ Rn

≤ f(z) +
1

2
||z − z||2

= f(z)

Note that first inequality holds by the definition of Moreav envelop, and the second

inequality holds for any z ∈ X ⊂ Rn. Also, we have the following,

Mα,f (z) = inf
x∈X

(
f(x) +

1

2α
||x− z||2

)
, α > 0, z ∈ Rn

≥ inf
x∈X

(f(x) + 0)

≥ inf
x∈X

f(x)

5. set of minima of min f(x) such that x ∈ X = set of minima of minMα,f(z)

47

such that z ∈ Rn. The proof is simple,

min
z∈Rn

Mα,f (z) = min
z∈Rn

(
min
x∈X

(
f(x) +

1

2α
||x− z||2

))
= min

x∈X
z∈Rn

(
f(x) +

1

2α
||x− z||2

)

= min
x∈X

(
min
z∈Rn

(
f(x) +

1

2α
||x− z||2

))
= min

x∈X
f(x)

The last inequality holds when z∗ = x. Therefore, we can say if x∗ is the min of f(x)

over X, then z∗ = x∗.

15 Lecture 15

Example 15.1 (Huber function). Let’s take an moreav envelope when the original

function f(x) = |x| where x ∈ Rn. Using the definition of Moreav envelop (Definition

45), we have

Mα,f (x) = inf
y

(
|y|+ 1

2α
(y − x)2

)

=

 1
2αx

2, |x| ≤ α→ Quadratic

|x| − α
2 , |x| > α→ Linear

we call this Huber function.

Therefore, let’s just recap what we have done so far. We have the problem min f(x) such

that x ∈ X and we know x(k+1) = argminx∈X

(
f(x) + 1

2α(k) ||x− x(k)||2
)
and note that we

have rewritten this as

x(k+1) = Proxα(k),f (x
(k)). (48)

Recall the Definition of prox operator at equation (46). Now, if we use the Equation

(47), we can derive the iterative algorithm to solve optimization problem (Equation (48))

as the following iterative process.

∇zMα,f (z) = ∇zg(x, z)
∣∣
x=x(z)

=
x(z)− z

α

Now, if if z = x(k), then we have x(k+1) = x(z). Plugging in that into above equation, we

have the following.

∇zMα,f (z) =
x(k) − x(k+1)

α(k)

Therefore, if we assume the constant step, then the optimization problem (Equation (48) =

48

Equation (44)) could be solved by the following iterative process.

x(k+1) = x(k) − α∇Mα,f (x
(k)) (49)

So, what is the message?

Remark 15.2 (Nonsmooth optimization→ smooth Moreav envelope optimization).

Iterates of Proximal algorithms on possibly non-smooth f(x) over X are the same

as iterates of gradient algorithm on smooth Mα,f (x) over Rn.

Now, let’s go back to the algorithm

x(k+1) = argmin
x∈X

(
f(x) +

1

2α(k)

∣∣∣∣∣∣x− x(k)
∣∣∣∣∣∣2)

Now, let us define γ(k) = minx∈X(f(x)+ 1
2α(k) ||x−x(k)||2). Then, consider two functions

1. f(x) over X.

2. γ − 1
2α(k) ||x− x(k)||2 over set X.

Then, γ(k) is smallest γ such that two functions 1. and 2. intersects. See Figure 1 for

details.

Figure 1: Two functions intersects at x = x(k+1)

Now, define two sets as follows.

C1 := {(x,w)|f(x) < w, x ∈ X,w ∈ R}

C2 := {(x,w)|w < γ(k) − 1

2α(k)
||x− x(k)||2,x ∈ Rn, w ∈ R}

Then, we can say C1 ∩ C2 = ∅ since C1, C2 are stict inequality and C1, C2 are convex

set. Therefore, there exists a separating hyperplane where normal vector is

∇
(
γ(k) − 1

2α(k)
||x− x(k)||

) ∣∣∣
x=x(k+1)

=
x(k) − x(k+1)

α(k)

now, since C1 is above the hyperplane, so its boundary f(x), we have the following theroem

49

Figure 2: f(x) have a lower bound with affine function.

Theorem 15.3. Think about prox algorithm as

x(k+1) = argmin
x∈X

(
f(x) +

1

2α(k)

∣∣∣∣∣∣x− x(k)
∣∣∣∣∣∣2)

Then, the following holds

f(x) ≥ f(x(k+1)) +
1

α(k)
(x(k) − x(k+1))⊤(x(k) − x(k+1))

for ∀x ∈ X.

15.1 Convergence of Proximal algorithm

Still, we are interested in solving the proximal algorithm as follows,

x(k+1) = argmin
x∈X

(
f(x) +

1

2α(k)

∣∣∣∣∣∣x− x(k)
∣∣∣∣∣∣2).

Now, we define

f⋆ := inf
x∈X

f(x)

X⋆ := set of minima of f(x) over X

We note that X⋆ might be empty and f⋆ also could be −∞.

Theorem 15.4 (Proximal algorithm converges to original problem). Consider Prox-

imal algorithm (Equation (44)). Now, pick α(k) such that
∑∞

k=0 α
(k) =∞, then

• f(x(k))→ f⋆

• If X⋆ ̸= empty, then {x(k)} converges to a unique point in X⋆.

50

Figure 3: distance function

15.2 Convergence rate of Proximal algorithm

Think about three examples |x|, x2, and x100. |x| has a fast growth around origin. x2 have

a moderate growth around origin, and x100 have a slow growth. To define its convergence

rate, we define distance function as follows,

d(x) = inf
x⋆∈X⋆

||x− x⋆||.

Note that the definition of distance function is the projection on X⋆ and finding the

distance.

Theorem 15.5. Assume that X⋆ = non-empty set and there exist ∃β > 0, δ >

0, γ ≥ 1 such that f⋆ +β(d(x))r ≤ f(x) for ∀x ∈ X such that d(x) ≤ δ. Also, for the

proximal algorithm as

x(k+1) = argmin
x∈X

(
f(x) +

1

2α(k)

∣∣∣∣∣∣x− x(k)
∣∣∣∣∣∣2).

Assume that
∑∞

k=0 α
(k) =∞ holds. Then

d(x(k+1)) + βα(k)(d(x(k+1)))γ−1 ≤ d(x(k))

holds all large values of k if x(k+1) /∈ X⋆.

For example, let X∗ as a single point x∗ ∈. Then, the distance function d(x) = |x − x|

and the condition could be simplified into the following equation β|x − x⋆|γ ≤ f(x) − f⋆

holds for local region where x− x⋆ ≤ δ.

Let’s take a deeply look at Theorem 15.5.

Case1 : 1 < γ < 2 and x(k) /∈ X⋆ for ∀k

d(x(k)) ≥ d(x(k+1)) + βα(k)(d(x(k+1)))γ−1

≥ βα(k)d(x(k+1))γ−1

51

Then we have

lim sup
d(x(k+1))

d(x(k))
1

γ−1

<∞.

If α(k) ≥ a positive constant for ∀k, then superlinear convergence is guaranteed.

For example, if γ = 1.5, then quadratic convergence is guaranteed.

Case2 : γ = 2 and x(k) /∈ X⋆ for ∀k.
Then we have

d(x(k)) ≥ d(x(k+1)) + βα(k)(d(x(k+1)))2−1

and
d(x(k+1))

d(x(k))
≤ 1

βα(k) + 1
≤ s

16 Lecture 17

16.1 Lagrangian function

We define a lagrangian function L : Rn+m → R as

L(x, λ) = f(x) +

m∑
i=1

λihi(x) (50)

Note that feasibility and FOC and SOC satisfies the following

1. (Feasibility) ∇λL(x∗, λ∗) = 0.

2. (FOC) ∇xL(x∗, λ∗) = 0.

3. (SOC) ∆x⊤∇2
xxL(x∗, λ∗)∆x ≥ 0, ∀∆x ∈ V (x∗).

Note that Feasibility and FOC condition is satisfied, then we could say that (x∗, λ∗) is a

stationary point for L(x, λ). If m ≥ 1, (x∗, λ∗) os mpt a :pca; ,om nit a saddle points Note

that Feasibility and FOC is n+m equations and n+m unknowns

52

16.2 SOC sufficient

Proposition 16.1. Consider a point x∗ and assume ∃λ∗ such that

1. ∇xL(x∗, λ∗) = 0

2. ∇λL(x∗, λ∗) = 0

3. ∆x⊤∇2
xxL(x∗, λ∗)∆x > 0 for ∀∆x : ∆x ̸= 0 where ∆x ∈ V (x∗)

Then, ∃γ > 0, ϵ > 0 such that

f(x) ≥ f(x∗) +
γ

2
||x− x∗||2︸ ︷︷ ︸

local quadratic function lower bound

for ∀x : h(x) = 0, ||x− x∗|| < ϵ.

some remarks on SOC sufficient proposition.

Remark 16.2. Some remarks on the above SOC

1. SOC implies x∗ is a strict (isolated) Local min → Local strong convexity.

2. It doesn’t require x∗ to be a regular point.

Before starting the proof, we need the following lemma

Lemma 16.1. Let P,Q be n× n symmetric matrices such that

1. Q ≥ 0

2. P is positive definite on the null space of Q, i.e. x⊤Px > 0 for ∀x : Qx = 0.

Then, there ∃c̄ such that P + cQ ≻ 0 for all c > c̄

Proof. By contradiction, we assume ∃{ck}∞k=1 such that c1 < c2 < · · · < ck → ∞ and at a

time k the inequality violates, i.e. P + ckQ ⊁ 0.

P + ckQ ⊁ 0 means that by the definition of pd matrix, there exists xk such that

||x(k)|| = 1 and (x(k))⊤(P + ckQ)x(k) ≤ 0.

Also, since x(k) is bounded, {x(k)} has a convergence subsequence K as {x(k)}k∈K → x̄.

Now, recall that (x(k))⊤(P + ckQ)x(k) ≤ 0 for ∀k ∈ K. Take the limit and we have

x̄⊤Px̄+ lim sup
k→∞,k∈K

ck + x̄⊤Qx̄ ≤ 0.

Therefore, if we take a look at assumption 2, for x̄ that satisfies Qx̄ = 0, if should satisfy

x̄⊤Px̄ > 0. So this contract above LHS of inequality should be negative.

Now, we come up with the proof of sufficient condition.

53

Proof. Before, we first define the augmented Lagrangian as

Lc(x, λ) = f(x) + λ⊤h(x) +
c

2
||h(x)||2.

Note that when c = 0, then L0(x, λ) = L(x, λ). Note that this is the Lagrangian function

of a new problem as

min f(x) +
c

2
||h(x)||2

s.t. h(x) = 0
(51)

Now, we want to claim that the original constrained problem and penalty added con-

strained problem have the same local minima. The intuition of this is that the penalty

term c
2 ||h(x)||

2 = 0 over the feasible set. Therefore, it won’t change the local minima of the

original problem. Now let’s take the derivative of Lc with respective to x,

∇xLc(x∗, λ∗) = ∇xL(x∗, λ∗) + c∇h(x∗)h(x∗)

= ∇xL(x∗, λ∗)

Note that the second equality holds by how we defined the problem. Also, the second

derivative of Lc holds as follows.

∇2
xxLc(x∗, λ∗) = ∇2

xxL(x∗, λ∗) + c∇h(x∗)∇h(x∗)
⊤ + c

m∑
i=1

hi(x∗)∇2hi(x∗)

= ∇2
xxL(x∗, λ∗) + c∇h(x∗)∇h(x∗)

⊤

Now, let’s use the lemma that we have came with up. Think P = ∇xxL(x∗, λ∗) and

Q = ∇h(x∗)∇h(x∗)
⊤. It is easily to check that two properties are satisfied of above lemma

is satisfied. (why ass 2 holds?). Therefore, we can say that for large c, the following holds ∇xLc(x∗, λ∗) = 0

∇xxLc(x∗, λ∗) ≻ 0

Therefore, by above two bullet points, we can say x∗ is also a strict local min for the problem

minx∈Rn Lc(x, λ∗). More precisielying see can say that by above two bullets, the function

L∗(x, λ∗) have a lower bound with respect to x as

L∗(x, λ∗) ≥ L∗(x∗, λ∗) +
γ

2
||x− x∗||2,∀x : ||x− x∗|| ≤ ϵ.

Now, if h(x) = 0, then we have Lc(x, λ∗) = f(x) + λ⊤
∗ h(x) +

c
2 ||h(x)||

2 = f(x)

min f(x)

s.t. h(x) = 0
(52)

to the unconstraid problem as

min f(x) + λ⊤
∗ h(x) +

c

2
||h(x)||2 (53)

54

Now, if c is large, then the penalty ||h(x)||2 is exact and we correctly solve the original

problem. However, we have the challenge. We dont’s know λ∗ in advance. So what if we

approximate λ∗? This is we we called

17 lecture 18

17.1 Sensitivitiy theorem

Let us assume that (x⋆, λ⋆) satisfies FOC, SOC(sufficient) for min f(x) such that h(x) = 0.

55

	Lecture 1
	Lecture 2
	Properties of local minimum x*
	First-order necessary condition
	Second-order necessary condition
	Second-order sufficient condition

	Update rule
	Descent direction
	Steepest descent

	Stepsize
	Exact line search

	Lecture 3
	Armijo rule
	Constant stepsize
	Diminishing stepsize
	Gradient related
	When to stop?

	Lecture 4
	Lipschitz continuity of gradient

	Lecture 5
	How to compare algorithms?: Convergence rate
	Convergence rate of Quadradic function f
	Approximation of function f to quadratic function
	Error rate for approximated quadratic function
	Constant step size
	Different step size (Exact line search)

	Lecture 6
	Approximated quadratic function when f(x) holds strong convexity
	Exact line search
	Exact line search – When to stop?
	Backtracking

	Approximated quadratic function when f(x) holds convexity
	Convergence rate
	When to stop?

	Lecture 7
	Heavy ball method
	Casestudy: quadratic function optimization

	Nestrov's acceleration method

	Lecture 8
	Newton method
	Newton's method when the initial point is close to the optimal point.
	Newton's method for arbitrary initial point
	Stopping criterion for Newton's method
	Number of iterations for Newton's method
	Newton's method for nonconvex problem and arbitrary initial point
	Intermediate Wrap-up
	Second-order is always better than first-order?

	Lecture 9
	Quasi Newton method
	Intermediate wrap-up

	Lecture 10
	Lecture 11
	Algorithms for constrained optimization
	Convex function
	m-Strongly convex function
	Convex set
	m-Strongly convex set
	When f is convex, X is convex
	When f is arbitrary, X is convex
	FOC necessary condition
	SOC necessary condition

	Lecture 12
	How to solve a constrained optimization problem?
	Frank-wolfe
	Remarks on Frank-Wolfe's complexity
	Convergence
	Frank-worlfe: gradient related
	Frank-wolfe: find stationary point
	Frank-wolfe when f is convex

	Lecture 13
	Frank-wolfe: when f is strongly convex
	Frank-wolfe: when f is convex & X is strongly convex
	Gradient Projection method
	Remarks on Gradient Prjection method's complexity
	Special case: Projected Gradient method
	Properties of projection operator
	Step size of Gradient projection method

	Lecture 14
	Convergence analysis of gradient projection methods (Quadratic function)
	What if c.d.(Q) is large?

	Convergence analysis of gradient projection methods (general function)
	Proximal algorithms: nonsmooth optimization
	Moreav envelope

	Lecture 15
	Convergence of Proximal algorithm
	Convergence rate of Proximal algorithm

	Lecture 17
	Lagrangian function
	SOC sufficient

	lecture 18
	Sensitivitiy theorem

