Explainable Deep Learning Model for EMG–Based Finger Angle Estimation using Attention

Hyunin Lee, DongWook Kim, Yong-Lae Park

[1] **Research Subject** : Control of Prosthetic Hand Using Forearm EMG

[2] Research Motive :

- Hand gesture classification of prosthetic hand EMG-based control method is insufficient for patients to use it in their lives.
- Explainable AI model is necessary

[1] Measure forearm EMG & Film the subject's hand

[2] Build a machine learning model : Encoder + Decoder + Attention

[3] Train the model

[1] Measure forearm EMG & Film the subject's hand

[2] Build a machine learning model : Encoder + Decoder + Attention

[3] Train the model

[1] Measure EMG & Film the subject's hand
 [2] Build a machine learning model : Encoder + Decoder + Attention
 [3] Train the model

Model description: 1 Encoder + 5 decoders with 5 attentions

Fig. 5. Total structure of proposed Neural Network: (a) encoder+decoder with attention matrix. (b) is the total

[1] Measure EMG & Film the subject's hand
[2] Build a machine learning model : Encoder + Decoder + Attention
[3] Train the model

Model train :

1) learning rate ($\gamma_{lr} = \{0.0001, 0.0003, 0.0005, 0.0007\}$)

2) teacher forcing ratio ($\gamma_{tfr} = \{0.0001, 0.0003, 0.0005, 0.0007\}$)

Train & Evaluation loss:

Research Result

[1] Model test result[2] Attention matrix result

 TABLE I

 COMPARISON OF 14 FINGER JOINT ANGLE PREDICTION ERROR RATES

 FROM THREE DIFFERENT MODEL WHEN EXECUTING TEST SET (TASK2)

		Naive NN	Naive En+De	En+De+Att
Thumb finger	PIP	11.1%	12.3%	8.0%
	IP	11.8%	11.9%	10.6%
Index finger	MCP	17.2%	11.8%	10.6%
	PIP	22.2%	17.7%	15.7%
	DIP	16.1%	10.1%	13.8%
Middle finger	MCP	18.7%	14.0 %	13.6%
	PIP	20.6%	14.1 %	15.9%
	DIP	18.8%	13.0 %	15.0%
Ring finger	MCP	14.4%	10.6%	10.0%
	PIP	14.1%	9.6%	10.4%
	DIP	16.1%	14.3%	9.8%
Pinky finger	MCP	16.5%	14.5%	12.1%
	PIP	16.3%	16.3%	12.2%
	DIP	20.0%	19.8%	15.2%

Research Result

[1] Model test result [2] Attention matrix result

Finger angle prediction 1 MCP 0 Truth angle Naïve NN Humb PIP En + De + Att he have MCP 0 A M hunden A Autom PIP A war alter the DIP A. Al Aluku Middle MCP 0 mannaahnna PIP 0 Ababa MANA A DIP 0 In Anna Anna AAA MCP 0-ALA Matheway Aug PIP PIP 1 Au MCP 0 WA LAWAR As a sublement of the second s and the ph Pinky 4 hellow the loss and the server lines A par represented to be and block of the state and represented Pinky DIP Lorenter Hutter and Andres - Mary Munthen Munthen A ò 1000 2000 3000 4000 5000 time [10 milisec]

Research Result

[1] Model test result[2] Attention matrix result

[1] This study proposes a explainable deep learning model that can predict finger joint angles by forearm EMG signals

[2] The proposed model can predict more complex data set (Task2) after the model was trained with simple data set (Task1)

[3] After-trained attention matrix (one of model results) implies the model learns the nonlinear relationship of EMG data and finger joint angle. This supports that the proposed model is explainable