DISTRIBUTIONAL REINFORCEMENT LEARNING

SPRING 2024

Hyunin Lee
Ph.D. student
UC Berkeley
hyunin@berkeley.edu

Contents

1 Chapter 1 3
2 Chapter 2 3
2.1 Random Variables and Their Probability Distributions 3
2.2 Markov Decision Processes . 3
2.3 The Pinball Modell . 3
2.4 The Return . 3
2.5 Properties of the Random Trajectory . 4
2.6 The Random-Variable Bellman Equation. 4
2.7 From Random Variables to Probability Distributions 4
2.7.1 Mixing. 5
2.7.2 Scaling and translation . 5

3 Chapter 3 6
3.1 The Monte Carlo Backup . 6
3.2 Incremental Learning. 7
3.3 Temporal-Difference Learning . 7
3.4 From Values to Probabilities . 8
3.5 The Projection Step . 8
3.6 Categorical Temporal-Difference Learning . 10

4 Chapter 4 11
4.1 Contration mappings . 12
4.2 The Distributional Bellman Operator. 13

1 Chapter 1

2 Chapter 2

2.1 Random Variables and Their Probability Distributions

2.2 Markov Decision Processes

Definition 2.1 (Transition dynamics). We define transition dynamics $\boldsymbol{P}: \mathcal{X} \times \mathcal{A} \rightarrow$ $\mathscr{P}(\mathbb{R} \times \mathcal{X})$ that provides the joint probabiltiy distirbuiotn of R_{t} and X_{t+1} in ertns of state X_{t} and action A_{t}.

$$
R_{t}, X_{t+1} \sim \boldsymbol{P}\left(\cdot, \cdot \mid X_{t}, A_{t}\right)
$$

Definition 2.2 (Reward distribution). $R_{t} \sim \boldsymbol{P}_{\mathcal{R}}\left(\cdot \mid X_{t}, A_{t}\right)$

Definition 2.3 (Transition kernel). $X_{t+1} \sim \boldsymbol{P}_{\mathcal{X}}\left(\cdot \mid X_{t}, A_{t}\right)$

> Definition $2.4 \quad$ Markov \quad Decision $\left(\mathcal{X}, \mathcal{A}, \xi_{0}, \boldsymbol{P}_{\mathcal{X}}, \boldsymbol{P}_{\mathcal{R}}\right)$

Definition 2.5 (Policy). A policy is a maaping $\pi: \mathcal{X} \rightarrow \mathscr{P}(\mathcal{A})$ rom state to probabilty distributions over actions.

$$
A_{t} \sim \pi\left(\cdot \mid X_{t}\right)
$$

2.3 The Pinball Model

2.4 The Return

Definition 2.6 (Return G). $G=\sum_{t=0}^{\infty} \gamma^{t} R_{t}$

The return is a sum of scaled, real-valued random variables and is therefore itself a random variable.

Assumption 2.7. For each state $x \in \mathcal{X}$ and action $a \in \mathcal{A}$, the reward distribution $\boldsymbol{P}_{\mathcal{R}}(\cdot \mid x, a)$ has finite first moment. This is if $R \sim \boldsymbol{P}_{\mathcal{R}}(\cdot \mid x, a)$, then

$$
\mathbb{E}[|R|]<\infty
$$

Proposition 2.8. Under Assumption 2.7, the random return G exists and is finite with proabbility 1 , in the sense that

$$
\mathbb{P}_{\pi}(G \in(-\infty, \infty))=1
$$

2.5 Properties of the Random Trajectory

Definition 2.9 (Probablity distribution of random variable Z). We denote $\mathcal{D}(Z)$ as the probability distribution of random variable Z. When Z is real-valued, then for $S \in \mathbb{R}$, we have

$$
\mathcal{D}(Z)(S)=\mathbb{P}(Z \in S)
$$

Also, we denote $\mathcal{D}_{\pi}(Z)$ as

$$
\mathcal{D}_{\pi}(Z)(S)=\mathbb{P}_{\pi}(Z \in S)
$$

2.6 The Random-Variable Bellman Equation

Definition 2.10 (Return-variable function). $G^{\pi}=\sum_{t=0}^{\infty} \gamma^{t} R_{t}, X_{0}=x$.

Formally, G^{π} is a collection of random variables indexed by an initial state x, each generated by a random trajectory $\left(X_{t}, A_{t}, R_{t}\right)_{t \geq 0}$ under the distribution $\boldsymbol{P}\left(\cdot \mid X_{0}=x\right)$.

Proposition 2.11 (The random-variable Bellman equation). Let G^{π} be the returnvariable function of policy π. For a sample transition $\left(X=x, A, R, X^{\prime}\right)$, it holds that for any state $x \in \mathcal{X}$,

$$
G^{\pi}(x) \stackrel{\mathcal{D}}{=} R+\gamma G^{\pi}\left(X^{\prime}\right)
$$

2.7 From Random Variables to Probability Distributions

Recall the notation that for a real-valued cariable Z with probablity distribution $\nu \in \mathscr{P}(\mathbb{R})$, we define

$$
\nu(S)=\mathbb{P}(Z \in S), S \subseteq \mathbb{R}
$$

In a same way, for each state $x \in \mathcal{X}$, let us denote the distribution of the random variable $G^{\pi}(x)$ by $\eta^{\pi}(x)$. Using this notation, we have

$$
\eta^{\pi}(x)(S)=\mathbb{P}\left(G^{\pi}(x) \in S\right), S \subseteq \mathbb{R}
$$

We call the collection of these per-state distribution the return-distirbuion function. Note that $\eta^{\pi}(x) \in \mathscr{P}(\mathbb{R})^{\mathcal{X}}$.

2.7.1 Mixing

Recall that for return-variable G^{π} and return-distribution function η^{π}, we have defined

$$
\mathcal{D}_{\pi}\left(G^{\pi}\left(X^{\prime}\right) \mid X=x\right)(S) \stackrel{\text { def }}{=} \mathbb{P}_{\pi}\left(G^{\pi}\left(X^{\prime}\right) \in S \mid X=x\right)
$$

Now, let's take a look at \mathbb{P}_{π} term.

$$
\begin{align*}
\mathcal{D}_{\pi}\left(G^{\pi}\left(X^{\prime}\right) \mid X=x\right)(S) & \stackrel{\text { def }}{=} \mathbb{P}_{\pi}\left(G^{\pi}\left(X^{\prime}\right) \in S \mid X=x\right) \\
& =\sum_{x^{\prime} \in \mathcal{X}} \mathbb{P}_{\pi}\left(X^{\prime}=x^{\prime} \mid X=x\right) \mathbb{P}_{\pi}\left(G^{\pi}\left(X^{\prime}\right) \in S \mid X^{\prime}=x^{\prime}, X=x\right) \\
& =\sum_{x^{\prime} \in \mathcal{X}} \mathbb{P}_{\pi}\left(X^{\prime}=x^{\prime} \mid X=x\right) \mathbb{P}_{\pi}\left(G^{\pi}\left(x^{\prime}\right) \in S\right) \\
& =\left(\sum_{x^{\prime} \in \mathcal{X}} \mathbb{P}_{\pi}\left(X^{\prime}=x^{\prime} \mid X=x\right) \eta^{\pi}\left(x^{\prime}\right)\right)(S) \tag{S}
\end{align*}
$$

Therefore, we can conclude that

$$
\begin{aligned}
\mathcal{D}_{\pi}\left(G^{\pi}\left(X^{\prime}\right) \mid X=x\right)(S) & =\sum_{x^{\prime} \in \mathcal{X}} \mathbb{P}_{\pi}\left(X^{\prime}=x^{\prime} \mid X=x\right) \eta^{\pi}\left(x^{\prime}\right) \\
& =\mathbb{E}_{\pi}\left[\eta^{\pi}\left(X^{\prime}\right) \mid X=x\right]
\end{aligned}
$$

The indexing step (S) also has a simple expression in terms of cumulative distribution functions as follows. Let $X=(\infty, z]$. Then we have

$$
\begin{aligned}
\mathbb{P}_{\pi}\left(G^{\pi}\left(X^{\prime}\right) \in S \mid X=x\right) & =P_{\pi}\left(G^{\pi}\left(X^{\prime}\right) \leq z \mid X=x\right) \\
& =\sum_{x^{\prime} \in \mathcal{X}} P_{\pi}\left(X^{\prime}=x^{\prime} \mid X=x\right) P_{\pi}\left(G^{\pi}\left(x^{\prime}\right) \leq z \mid X=x\right) \\
& =\sum_{x^{\prime} \in \mathcal{X}} P_{\pi}\left(X^{\prime}=x^{\prime} \mid X=x\right) P_{\pi}\left(G^{\pi}\left(x^{\prime}\right) \leq z\right)
\end{aligned}
$$

Then if we let $F_{G^{\pi}\left(X^{\prime}\right)}(z)$ to be the c.d.f of random variable $G^{\pi}\left(X^{\prime}\right)$ up toz, we have

$$
F_{G^{\pi}\left(X^{\prime}\right)}(z)=\sum_{x^{\prime} \in \mathcal{X}} P_{\pi}\left(X^{\prime}=x^{\prime} \mid X=x\right) F_{G^{\pi}\left(x^{\prime}\right)}(z)
$$

2.7.2 Scaling and translation

Suppose we konw the distribution of $G^{\pi}\left(X^{\prime}\right)$. Then what is the distribution of $R+\gamma G^{\pi}\left(X^{\prime}\right)$? This is an instance of a more general question: given a random variable $Z \sim \nu$ and a transformation $f: \mathbb{R} \beta \mathbb{R}$, how should we express the distribution of $f(Z)$ in terms of f and ν ? Within this sense, we define pushforward distrbution as $f_{\#} \nu:=\mathcal{D}(f(Z))$. Now, for $r \in \mathbb{R}$ and $\gamma \in[0,1)$, we define bootstarp function $b_{r, \gamma} z \mapsto r+\gamma z$. Then we have

$$
\left(b_{r, \gamma}\right)_{\#} \nu=\mathcal{D}(r+\gamma Z)
$$

where $Z \sim \nu$. Now, let's regard that $\nu=\eta^{\pi}\left(x^{\prime}\right)$ as a return distribution of state x^{\prime} and we have correspoding random variable $G^{\pi}\left(x^{\prime}\right)$, i,e. $Z=G^{\pi}\left(x^{\prime}\right)$. Then, we have

$$
\left(b_{r, \gamma}\right)_{\#} \eta^{\pi}\left(x^{\prime}\right)=\mathcal{D}\left(r+\gamma G^{\pi}\left(x^{\prime}\right)\right)
$$

Proposition 2.12 (The distributional Bellman equation). Let η^{π} be the returndistribution function of policy π. Then, for any state $x \in \mathcal{X}$, we have

$$
\begin{equation*}
\eta^{\pi}(x)=\mathbb{E}_{\pi}\left[\left(b_{r, \gamma}\right)_{\#} \eta^{\pi}\left(X^{\prime}\right) \mid X=x\right] \tag{1}
\end{equation*}
$$

Just want to leave remark that $\mathbb{E}_{\pi}\left[g\left(X^{\prime}\right) \mid X=x\right]=\sum_{x^{\prime} \in \mathcal{X}} \mathbb{P}_{\pi}\left(X^{\prime}=x^{\prime} \mid X=x\right) g\left(x^{\prime}\right)$ for any real-value function $g: \mathcal{X} \rightarrow \mathbb{R}$.

Proof.
It is also possible to omit these random variables and write Equation (1) purely in terms of probability distributions, by making the expectation explicit:

$$
\eta^{\pi}(x)=\sum_{a \in \mathcal{A}} \pi(a \mid x) \sum_{x^{\prime} \in \mathcal{X}} \boldsymbol{P}\left(x^{\prime} \mid x, a\right) \int_{\mathbb{R}} \boldsymbol{P}_{\mathbb{R}}(d r \mid x, a)\left(b_{r, \gamma}\right) \neq \eta^{\pi}\left(x^{\prime}\right)
$$

3 Chapter 3

3.1 The Monte Carlo Backup

Suppose we have K sample trajectories for state x and action a and reward r where each trajectory have total T_{k} steps as follows.

$$
\begin{equation*}
\left\{\left(x_{k, t}, a_{k, t}, x_{k, t}\right)_{t=0}^{T_{k}-1}\right\}_{k=1}^{K} \tag{2}
\end{equation*}
$$

For now, assume that $T_{k}=T$ and $x_{k, 0}=x_{0}$ for all k. We are interested in estimating the expected return

$$
\mathbb{E}_{\pi}\left[\sum_{t=0}^{T-1} \gamma^{t} R_{t}\right]=V^{\pi}\left(x_{0}\right)
$$

Monte Carlo methods estimate the expected return by averaging the outcomes of observed trajecoteries. Let us denote the sample reutnr for k th trajeoctyr as g_{k} which is defined as

$$
\begin{equation*}
g_{k}=\sum_{t=0}^{T-1} \gamma^{t} r_{k, t} \tag{3}
\end{equation*}
$$

Then the sample-mean Monte Carlo estimate is the average of these K sample returns

$$
\begin{equation*}
\hat{V}^{\pi}\left(x_{0}\right)=\frac{1}{K} \sum_{k=1}^{K} g_{k} \tag{4}
\end{equation*}
$$

3.2 Incremental Learning

Rather than after sample K samples, then compute all at once, it is much more useful to consider a learning model under which sample trajectories are processed sequentially. We call this algorihtm as incremental algorithms. Consdier an infinite sequence of sample trajectories

$$
\begin{equation*}
\left\{\left(x_{k, t}, a_{k, t}, x_{k, t}\right)_{t=0}^{T_{k}-1}\right\}_{k \geq 0} \tag{5}
\end{equation*}
$$

suppose that initial states $\left\{\left(x_{k, 0}\right)_{k \geq 0}\right\}$ may be different. At k th stage, the agent is given a k th trajectory, and the algorihtm compues the sample return g_{k} (Equation (4)) which we called as Monte Carlo target. It then adjusts the value function of initial state $x_{k, 0}$ toward this target $\left(g_{k}\right)$ by the following update rule,

$$
V\left(x_{k, 0}\right) \leftarrow\left(1-\alpha_{k}\right) V\left(x_{k, 0}\right)+\alpha_{k} g_{k}
$$

where α_{k} is a time-varying step size.
Note that this incremental Monte Carlo Update rule only depends on the stating state and the sampel return pairs:

$$
\begin{equation*}
\left(x_{k}, g_{k}\right)_{k \geq 0} \tag{6}
\end{equation*}
$$

We asume that the sample return g_{k} is assumed drawn from the return distribution $\eta^{\pi}\left(x_{k}\right)$. Then we have the following update rule

$$
\begin{equation*}
V\left(x_{k}\right) \leftarrow\left(1-\alpha_{k}\right) V\left(x_{k}\right)+\alpha_{k} g_{k} \tag{7}
\end{equation*}
$$

This could be more expressed by

$$
\begin{array}{r}
V_{k+1}\left(x_{k}\right)=\left(1-\alpha_{k}\right) V_{k}\left(x_{k}\right)+\alpha_{k} g_{k} \tag{8}\\
V_{k+1}(x)=V_{k}(x) \text { for } x \neq x_{k}
\end{array}
$$

3.3 Temporal-Difference Learning

Incremental learning algorihtms are useful since they update for eveyr episode. Tempoarldiffernet learning (TD learning) is more fine-grained update version. It learn from sample transitions, rather than entire trajectories.

Let us consdier a seuqen of smpale ransitions drwn independently as follows

$$
\begin{equation*}
\left(x_{k}, a_{k}, r_{k}, x_{k}^{\prime}\right)_{k \geq 0} \tag{9}
\end{equation*}
$$

As with the incremental Monte Carlo algoithm, the update rule of temporal differnece learning is

$$
\begin{equation*}
V\left(x_{k}\right) \leftarrow\left(1-\alpha_{k}\right) V\left(x_{k}\right)+\alpha_{k}\left(r_{k}+\gamma V\left(x_{k}^{\prime}\right)\right) \tag{10}
\end{equation*}
$$

We call the term $r_{k}+\gamma V\left(x_{k}^{\prime}\right)$ as the temporal-difference target, and by arrangin the term, we call the term $r_{k}+\gamma V\left(x_{k}^{\prime}\right)-V\left(x_{k}\right)$ as the temproal-differnec error as

$$
V\left(x_{k}\right) \leftarrow V\left(x_{k}\right) \alpha_{k}\left(r_{k}+\gamma V\left(x_{k}^{\prime}\right)-V\left(x_{k}^{\prime}\right)\right)
$$

Incremental Monte Carlo algorithm updates its value function estimate toward a fixed target
g_{k}, but in TD learning we don't have such fixed target. Temporal-difference learning instead depends on the value function at the next state $V\left(x_{k}^{\prime}\right)$ being approximately correct. As such, it is said to bootstrap from its own value function estimate.

3.4 From Values to Probabilities

We are highly interested in how we can learn the return-distribution function η^{π}. Let's first take a scenario for binary reward, i.e. $R_{t} \in\{0,1\}$ and we are intesreind in distribution of undiscounted finite-horizon return function

$$
\begin{equation*}
G^{\pi}(x)=\sum_{t=0}^{H-1} R_{t}, \quad X_{0}=x \tag{11}
\end{equation*}
$$

Since the $G^{\pi}(x)$ takes an integer value between 0 to H, these form the support of the probability distribution $\eta^{\pi}(x)$. To learn $\eta^{\pi}(x)$, we assigns a probability $p_{i}(x) \geq 0$ where $\sum_{i=0}^{H} p_{i}(x)=1$ as

$$
\begin{equation*}
\eta(x)=\sum_{i=0}^{H} p_{i}(x) \delta_{i} \tag{12}
\end{equation*}
$$

We call this equation categortical representation. It's kind of classification problem for given state x. Now, let us consider the problem that we have a state-return pairs $\left(x_{k}, g_{k}\right)_{k \geq 0}$ where each g_{k} is drawn from the distribution $\eta^{\pi}\left(x_{k}\right)$. Now, we have categorical update rule as

$$
\begin{align*}
p_{g_{k}}\left(x_{k}\right) & \leftarrow\left(1-\alpha_{k}\right) p_{g_{k}}\left(x_{k}\right)+\alpha_{k} \tag{13}\\
p_{i}\left(x_{k}\right) & \leftarrow\left(1-\alpha_{k}\right) p_{i}\left(x_{k}\right) \text { for } i \neq g_{k}
\end{align*}
$$

Combining equations (12) and (13) provide the following equation

$$
\begin{equation*}
\eta\left(x_{k}\right) \leftarrow\left(1-\alpha_{k}\right) \eta\left(x_{k}\right)+\alpha_{k} \delta_{g_{k}} \tag{14}
\end{equation*}
$$

We call Equation (14) as undiscounted finite-horizon categorical Monte Carlo algorithm.

3.5 The Projection Step

For H steps binary rewards $\left(N_{\mathcal{R}}=2\right)$, the number of possible returns is $N_{G}=H+1$. However, what if $N_{\mathcal{R}}>2$ or if we have discounted factor γ ? Noe that whwen γ is introduced, then N_{G} grows exponentially on H.

To handle this large set of possible returns, we inset a projection step prior to the mixture update on Equation (14). We will consider return distributions that assign probability mass to $m \geq 2$ evenly spaced values or locations $\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{m}$ where the gap $\zeta_{m}:=\theta_{i+1}=\theta_{i}$ is identical. A common design is take $\theta_{1}=V_{\min }, \theta_{m}=V_{\max }$ and set

$$
\vartheta_{m}=\frac{V_{\max }-V_{\min }}{m-1}
$$

which is just identical gap. We express the corresponding return distribution $\eta(x)$ as
weighted sum of Dirac deltas as follows.

$$
\eta(x)=\sum_{i=1}^{m} p_{i}(x) \delta_{\theta_{i}}
$$

Now, consider a sample return $g \sim \eta(x)$ and we denote the g falls between $\theta_{i^{*}}$ and $\theta_{i^{*}+1}$ which could be defined as $i^{*}=\arg \max _{i \in\{0, \cdots, m\}}\left\{\theta_{i}: \theta_{i} \leq g\right\}$. We write

$$
\Pi_{-}(g)=\theta_{i^{*}}, \quad \Pi_{+}(g)=\theta_{i^{*}+1}
$$

Then define $\zeta(g)$ term corresponds to the distance of g to the two closest elements of the support, scaled to lie in the interval $[0,1]$ as

$$
\zeta(g)=\frac{g-\Pi_{-}(g)}{\Pi_{+}(g)-\Pi_{-}(g)}
$$

Then, we define stocastic projection of g as

$$
\Pi_{ \pm}(g)=\left\{\begin{array}{l}
\Pi_{-}(g) \text { with probability } 1-\zeta(g) \\
\Pi_{+}(g) \text { with probability } \zeta(g)
\end{array}\right.
$$

Use this projection to construct the update rule as

$$
\eta(x) \leftarrow(1-\alpha) \eta(x)+\alpha \delta_{\Pi_{ \pm}(g)}
$$

which is similar to Equation (14). We could also write as

$$
\begin{aligned}
p_{i^{ \pm}}(x) & \leftarrow(1-\alpha) p_{i^{ \pm}}(x)+\alpha \\
p_{i}(x) & \leftarrow(1-\alpha) p_{i}(x) \text { for } i \neq i^{ \pm}
\end{aligned}
$$

where $i^{ \pm}$is the index of location $\Pi_{ \pm} g$. Note that the stochastic projection could be improved by putting both $\Pi_{-}(g)$ and $\Pi_{+}(g)$ information. We define deterministic projection as

$$
\begin{equation*}
\eta(x) \leftarrow(1-\alpha) \eta(x)+\alpha\left[(1-\zeta(g)) \delta_{\Pi_{-}(g)}+\zeta(g) \delta_{\Pi_{+}(g)}\right] \tag{15}
\end{equation*}
$$

Within this sense, we deinfe projection operator Π_{c} that applies to the distribution δ_{g} as

$$
\begin{equation*}
\Pi_{c} \delta_{g}=(1-\zeta(g)) \delta_{\Pi_{-}(g)}+\zeta(g) \delta_{\Pi_{+}(g)} \tag{16}
\end{equation*}
$$

We call this method the categorical Monte Carlo algorithm.
Under the right condition, Equation 15 is correlated with a return distribution $\hat{\eta}^{\pi}(x)$ where we have $\hat{\eta}^{\pi}(x)=\mathbb{E}\left[\Pi_{c} \delta_{G^{\pi}(x)}\right]$. In fact, we may write as

$$
\mathbb{E}\left[\Pi_{c} \delta_{G^{\pi}(x)}\right]=\Pi_{c} \eta^{\pi}(x)
$$

where $\Pi_{c} \eta^{\pi}(x)$ is a distribution supported on $\left\{\theta_{1}, \cdots, \theta_{m}\right\}$ produced by projecting all possible outcomes under distribution $\eta^{\pi}(x)$.

3.6 Categorical Temporal-Difference Learning

What TD learning do is

- learn from sample transition rather than full trajectory
- It learns by bootstrapping from its current return function estimates.

Suppse we have a transition data $\left(x, a, r, x^{\prime}\right)$. CTD maintains a return fiction estaimte $\eta(x)$ supported on evenly spaced locations $\left\{\theta_{1}, \cdots, \theta_{m}\right\}$. Let the return distribution of x^{\prime} as

$$
\eta\left(x^{\prime}\right)=\sum_{i=1}^{m} p_{i}\left(x^{\prime}\right) \delta_{\theta_{i}}
$$

then the intermediate target is

$$
\tilde{\eta}(x)=\sum_{i=1}^{m} p_{i}\left(x^{\prime}\right) \delta_{r+\gamma \theta_{i}}
$$

which can also be expressed in terms of a pushforward distribution (Recall Subsection 2.7)
as

$$
\begin{equation*}
\tilde{\eta}(x)=\left(b_{r, \gamma}\right) \neq \eta\left(x^{\prime}\right) . \tag{17}
\end{equation*}
$$

Note that each particles of $\eta\left(x^{\prime}\right)$ are supports of $\left\{\theta_{1}, \cdots, \theta_{m}\right\}$, but pushing forward those particles actually does not makes liying in the support of the original distribution. This motivates the use of projection step Π_{c}. We let notation $\tilde{\theta}_{i}=r+\gamma \theta_{i}$. Then, we have

$$
\begin{aligned}
\Pi_{c} \tilde{\eta}(x) & =\Pi_{c} \sum_{j=1}^{m} p_{j}\left(x^{\prime}\right) \delta_{r+\gamma \theta_{i}} \\
& =\sum_{j=1}^{m} p_{j}\left(x^{\prime}\right) \Pi_{c} \delta_{r+\gamma \theta_{i}} \\
& =\sum_{j=1}^{m} p_{j}\left(x^{\prime}\right)\left[\left(1-\zeta\left(\tilde{\theta}_{j}\right)\right) \delta_{\Pi_{-}\left(\tilde{\theta}_{j}\right)}+\zeta\left(\tilde{\theta}_{j}\right) \delta_{\Pi_{+}\left(\tilde{\theta}_{j}\right)}\right] \\
& =\sum_{i=1}^{m} \delta_{\theta_{i}}\left(\sum_{j=1}^{m} p_{j}\left(x^{\prime}\right) \zeta_{i, j}(r)\right)
\end{aligned}
$$

where $\zeta_{i, j}(r)=\left(1-\zeta\left(\tilde{\theta}_{j}\right)\right) \mathbf{1}_{\left\{\Pi_{-}\left(\tilde{\theta}_{j}\right)=\theta_{j}\right\}}+\zeta\left(\tilde{\theta}_{j}\right) \mathbf{1}_{\left\{\Pi_{+}\left(\tilde{\theta}_{j}\right)=\theta_{j}\right\}}$. Note that third equality holds by defintion of determisitic projection (equation (16)). Also, the last line highlights that the CTD target lies on a support of $\left\{\theta_{1}, \cdots, \theta_{m}\right\}$. Note that the assignment is obtained by weighting the next-state probabilities $p_{j}\left(x^{\prime}\right)$ by the coefficients $\zeta_{i, j}(r)$. Using the projected intermediate target, i.e. $\Pi_{c} \tilde{\eta}(x)$, we have the following CTD update rule:

$$
\begin{align*}
\eta(x) & \leftarrow(1-\alpha) \eta(x)+\alpha\left(\Pi_{c} \tilde{\eta}(x)\right) \tag{18}\\
& \leftarrow(1-\alpha) \eta(x)+\alpha\left(\Pi_{c}\left(b_{r, \gamma} \eta\left(x^{\prime}\right)\right)\right)
\end{align*}
$$

Now, note that $\eta(x)$ and $\eta\left(x^{\prime}\right)$ are the categorical distribution which is a mixture of diracdelta function. Plugging its definition into Equation (18), we have the following update
rule:

$$
\begin{equation*}
p_{i}(x) \leftarrow(1-\alpha) p_{i}(x)+\alpha \sum_{j=1}^{m} \zeta_{i, j}(r) p_{j}\left(x^{\prime}\right) \tag{19}
\end{equation*}
$$

With this form, we see that the CTD update rule adjusts each probability $p_{i}(x)$ of the return distribution at state x toward a mixture of the probabilities $\zeta_{i, j}(r)$ of the return distribution at the next state x^{\prime}.

4 Chapter 4

We have defined value function V^{π} as

$$
V^{\pi}(x):=\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \mid X_{0}=x\right]
$$

and the bellman equation which make relationship between expected return of one state and from its successor as

$$
V^{\pi}(x):=\mathbb{E}_{\pi}\left[R+\gamma V^{\pi}\left(X^{\prime}\right) \mid X=x\right]
$$

Now, consider a state-indexed collection of real variables, written $V \in \mathbb{R}^{\mathcal{X}}$, which we call a value function estimate. By substituting V^{π} for V in the original Bellman equation, we obtain the system of equations

$$
\begin{equation*}
V(x)=\mathbb{E}\left[R+\gamma V\left(X^{\prime}\right) \mid X=x\right], \forall x \in \mathcal{X} \tag{20}
\end{equation*}
$$

We know V^{π} is the solution of above equations. Is there other solution?. Let's investigate this in this section. First, we define operators which is a function that map elements of a space onto itself, such as this one (from estimates to estimates).

Definition 4.1 (Bellman operator). The bellman operator is the mapping T^{π} : $\mathbb{R}^{\mathcal{X}} \rightarrow \mathbb{R}^{\mathcal{X}}$ defined by

$$
\begin{equation*}
\left(T^{\pi} V\right)(x)=\mathbb{E}_{\pi}\left[R+\gamma V\left(X^{\prime}\right) \mid X=x\right] \tag{21}
\end{equation*}
$$

Bellman operator provides a good way to re-express the Equation as

$$
V=T^{\pi} V
$$

We can also write the full expectation as

$$
\begin{equation*}
T^{\pi} V=r^{\pi}+\gamma P^{\pi} V \tag{22}
\end{equation*}
$$

where $r^{\pi}(x)=\mathbb{E}_{\pi}[R \mid X=x]$ and P^{π} is the transition operator defined as

$$
\left(P^{\pi} V\right)(x)=\sum_{a \in \mathcal{A}} \pi(a \mid x) \sum_{x \in \mathcal{X}} \boldsymbol{P}_{\mathcal{X}}\left(x^{\prime} \mid x, a\right) V\left(x^{\prime}\right)
$$

Note that the \mathbb{E}_{π} means expectation when π is fixed. We say vector $\tilde{V} \in \mathbb{R}^{\mathcal{X}}$ is a solution
to Equation 20 if it is unchanged by RHS transformation. Namely, it should be a fixed point with respect to bellman operator T^{π}. This also means V^{π} is a fixed point of T^{π}. We will show V^{π} is the only fixed point as following subsection.

4.1 Contration mappings

We need to define how close V and $T^{\pi} V$ are. So we deinfe metric as follows.

Definition 4.2 (Metric). Given a set M, a metric $d: M \times M \rightarrow \mathbb{R}$ is a function that satisfies, for all $U, V, W \in M$,

1. $d(U, V) \geq 0$,
2. $d(U, V)=0$ iff $U=V$,
3. $d(U, V) \leq d(U, W)+d(W, V)$,
4. $d(U, V)=d(V, U)$.

We call the pair (M, d) as a metric space.

In our setting, $M=\mathbb{R}^{\mathcal{X}}$ and we can thought of as a infinitry large vector with total $|\mathcal{X}|$ entries. We define L^{∞} metric for $V, V^{\prime} \in \mathbb{R}^{\mathcal{X}}$ as

$$
\begin{equation*}
\left\|V-V^{\prime}\right\|_{\infty}=\max _{x \in \mathcal{X}}\left|V(x)-V^{\prime}(x)\right| \tag{23}
\end{equation*}
$$

We will show Bellman operator T^{π} is a contraction mapping with respect to this metric. Informally, this means that its application to different value function estimates brings them closer by at least a constant multiplicative factor, called its contraction modulus.

Definition 4.3 (Contraction modulus). Let (M, d) is a metric space. A function $\mathcal{O}: M \rightarrow M$ is a contration mapping with respect to d with contraction modulus beta $\in[0,1)$ if for all $U, U^{\prime} \in M$,

$$
d\left(\mathcal{O} U, \mathcal{O} U^{\prime}\right) \leq \beta d\left(U, U^{\prime}\right)
$$

Proposition 4.4 (Contraction mapping of Bellaman operator). The operator T^{π} : $\mathbb{R}^{\mathcal{X}} \rightarrow \mathbb{R}^{\mathcal{X}}$ is a contraction mapping with respect to the L^{∞} metric on $R^{\mathcal{X}}$ with contraction modulus given by the discount factor γ. That is, for any two value functions $V, V^{\prime} \in \mathbb{R}^{\mathcal{X}}$,

$$
\left\|T^{\pi} V-T^{\pi} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

Proof. To be continue.

Proposition 4.5 (Unique fixed point of contraction mapping). Let (M, d) be a metric space and $\mathcal{O}: M \rightarrow M$ be a contraction mapping. Then \mathcal{O} has at most one fixed point in M.

Propositions 4.4 and 4.5 guarantees the Bellman operator T^{π} has a unique fixed point V^{π}.

Now, how to compute a fixed point? We can do it by iterative process. For given contraction mapping $\mathcal{O}: M \rightarrow M$, we can approximate the fixed point by a sequence $\left(U_{k}\right)_{k \geq 0}$ by iterative process $U_{k+1}=M U_{k}$.

Proposition 4.6. Let (M.d) be a metric space and let \mathcal{O} be a contraction mapping with contraction modulus $\beta \in[0,1)$ and have a fixed point $U^{*} \in M$. Then for any initial point U_{0}, the sequence $\left(U_{k}\right)_{k \geq 0}$ generated by $U_{k+1}=\mathcal{O} U_{k}$ satisfies

$$
\begin{equation*}
d\left(U_{k}, U^{*}\right) \leq \beta^{k} d\left(U_{0}, U^{*}\right) \tag{24}
\end{equation*}
$$

and particular $d\left(U_{k}, U^{*}\right) \rightarrow 0$ as $k \rightarrow \infty$.

Proof. To be continue.
In case of Bellman operator T^{π}, what Proposition 4.6 tells us is that for any initial point $V_{0} \in \mathbb{R}^{\mathcal{X}}$, the sequence $\left(V_{k}\right)_{k \geq 0}$ converges to a fixed unique point V^{π}.

4.2 The Distributional Bellman Operator

one important question of distributional reinforcement learning is that how to represent probability distribution into computer memory.

Let's recall random variable bellman equation (Proposition 2.8),

$$
\begin{equation*}
G^{\pi}(x) \stackrel{\mathcal{D}}{=} R+\gamma G^{\pi}\left(X^{\prime}\right), \quad X=x \tag{25}
\end{equation*}
$$

Recall that $G^{\pi}(x)$ is a random variable sampled from a distribution $\eta^{\pi}(x)$ which is a return distribution when initial state is x. The RHS of Equation 25 could be decomposed into following three process.

1. $G^{\pi}\left(X^{\prime}\right)$: indexing of the collection of random variables G^{π} by X^{\prime}.
2. $\gamma G^{\pi}\left(X^{\prime}\right)$: multiplication of the random variable $G\left(X^{\prime}\right)$ with scalar γ.
3. $R+\gamma G^{\pi}\left(X^{\prime}\right)$ addition of two random variables R and $\gamma G\left(X^{\prime}\right)$

We can apply above process to any state-indexed collection of random variables $G^{\pi}=$ $\left(G^{\pi}(x): x \in \mathcal{X}\right)$. Now, we introduce random vairable bellman operator as

$$
\begin{equation*}
\left(\mathcal{T}^{\pi} G\right)(x) \stackrel{\mathcal{D}}{=} R+\gamma G\left(X^{\prime}\right), \quad X=x \tag{26}
\end{equation*}
$$

Equation (26) states that the application of the Bellman operator to G (evaluated at x; the left-hand side) produces a random variable that is equal in distribution to the random
variable constructed on the right-hand side. Because this holds for all x, we think of \mathcal{T}^{π} as mapping G to a new collection of random variables $\mathcal{T}^{\pi} G$.

Let's recall Proposotion 2.11 to define bellman operator at probability distribution.

Definition 4.7 (Distribtuional Bellman Operator \mathcal{T}^{π}). The distributional bellman operator $\mathcal{T}^{\pi}: \mathscr{P}(\mathbb{R})^{\mathcal{X}} \rightarrow \mathscr{P}(\mathbb{R})^{\mathcal{X}}$ is mapping defined by

$$
\begin{equation*}
\left(\mathcal{T}^{\pi} \eta\right)(x)=\mathbb{E}_{\pi}\left[\left(b_{r, \gamma}\right)_{\#} \eta\left(X^{\prime}\right) \mid X=x\right] \tag{27}
\end{equation*}
$$

Note that distributional bellman opertoar maps between distribution and distribution. Wtih \mathcal{T}^{π} and Proposition 4.5, we could say its fixed point is η^{π} and its unique.

Proposition 4.8 (Unique fixec point of distribtuional bellman operator). The return-distribution function η^{π} satisfies

$$
\eta^{\pi}=\mathcal{T}^{\pi} \eta^{\pi}
$$

and is the unique fixed point of the distributional Bellman operator \mathcal{T}^{π}.

