
DISTRIBUTIONAL REINFORCEMENT

LEARNING

SPRING 2024

Hyunin Lee

Ph.D. student

UC Berkeley

hyunin@berkeley.edu

1

Contents

1 Chapter 1 3

2 Chapter 2 3

2.1 Random Variables and Their Probability Distributions 3

2.2 Markov Decision Processes . 3

2.3 The Pinball Model . 3

2.4 The Return . 3

2.5 Properties of the Random Trajectory . 4

2.6 The Random-Variable Bellman Equation . 4

2.7 From Random Variables to Probability Distributions 4

2.7.1 Mixing . 5

2.7.2 Scaling and translation . 5

3 Chapter 3 6

3.1 The Monte Carlo Backup . 6

3.2 Incremental Learning . 7

3.3 Temporal-Difference Learning . 7

3.4 From Values to Probabilities . 8

3.5 The Projection Step . 8

3.6 Categorical Temporal-Difference Learning . 10

4 Chapter 4 11

4.1 Contration mappings . 12

4.2 The Distributional Bellman Operator . 13

2

1 Chapter 1

2 Chapter 2

2.1 Random Variables and Their Probability Distributions

2.2 Markov Decision Processes

Definition 2.1 (Transition dynamics). We define transition dynamics P : X ×A →
P(R × X) that provides the joint probabiltiy distirbuiotn of Rt and Xt+1 in ertns

of state Xt and action At.

Rt, Xt+1 ∼ P (·, ·|Xt, At)

Definition 2.2 (Reward distribution). Rt ∼ PR(· | Xt, At)

Definition 2.3 (Transition kernel). Xt+1 ∼ PX (· | Xt, At)

Definition 2.4 (Markov Decision Process (MDP)). MDP is a tuple

(X ,A, ξ0,PX ,PR)

Definition 2.5 (Policy). A policy is a maaping π : X →P(A) rom state to proba-

bilty distributions over actions.

At ∼ π(·|Xt)

2.3 The Pinball Model

2.4 The Return

Definition 2.6 (Return G). G =
∑∞

t=0 γ
tRt

The return is a sum of scaled, real-valued random variables and is therefore itself a

random variable.

Assumption 2.7. For each state x ∈ X and action a ∈ A, the reward distribution

PR(· | x, a) has finite first moment. This is if R ∼ PR(· | x, a), then

E [|R|] <∞.

3

Proposition 2.8. Under Assumption 2.7, the random return G exists and is finite

with proabbility 1, in the sense that

Pπ (G ∈ (−∞,∞)) = 1.

2.5 Properties of the Random Trajectory

Definition 2.9 (Probablity distribution of random variable Z). We denote D(Z) as

the probability distribution of random variable Z. When Z is real-valued, then for

S ∈ R, we have

D(Z)(S) = P(Z ∈ S)

Also, we denote Dπ(Z) as

Dπ(Z)(S) = Pπ(Z ∈ S)

2.6 The Random-Variable Bellman Equation

Definition 2.10 (Return-variable function). Gπ =
∑∞

t=0 γ
tRt, X0 = x.

Formally, Gπ is a collection of random variables indexed by an initial state x, each

generated by a random trajectory (Xt, At, Rt)t≥0 under the distribution P (·|X0 = x).

Proposition 2.11 (The random-variable Bellman equation). Let Gπ be the return-

variable function of policy π. For a sample transition (X = x,A,R,X ′), it holds

that for any state x ∈ X ,
Gπ(x)

D
= R+ γGπ(X ′)

2.7 From Random Variables to Probability Distributions

Recall the notation that for a real-valued cariable Z with probablity distribution ν ∈P(R),
we define

ν(S) = P(Z ∈ S), S ⊆ R.

In a same way, for each state x ∈ X , let us denote the distribution of the random variable

Gπ(x) by ηπ(x). Using this notation ,we have

ηπ(x)(S) = P(Gπ(x) ∈ S), S ⊆ R.

We call the collection of these per-state distribution the return-distirbuion function. Note

that ηπ(x) ∈P(R)X .

4

2.7.1 Mixing

Recall that for return-variable Gπ and return-distribution function ηπ, we have defined

Dπ(G
π(X ′)|X = x)(S)

def
= Pπ(G

π(X ′) ∈ S|X = x).

Now, let’s take a look at Pπ term.

Dπ(G
π(X ′)|X = x)(S)

def
= Pπ(G

π(X ′) ∈ S|X = x)

=
∑
x′∈X

Pπ(X
′ = x′|X = x)Pπ(G

π(X ′) ∈ S|X ′ = x′, X = x)

=
∑
x′∈X

Pπ(X
′ = x′|X = x)Pπ(G

π(x′) ∈ S)

=

(∑
x′∈X

Pπ(X
′ = x′|X = x)ηπ(x′)

)
(S)

Therefore, we can conclude that

Dπ(G
π(X ′)|X = x)(S) =

∑
x′∈X

Pπ(X
′ = x′|X = x)ηπ(x′)

= Eπ [η
π(X ′) | X = x]

The indexing step (S) also has a simple expression in terms of cumulative distribution

functions as follows. Let X = (∞, z]. Then we have

Pπ(G
π(X ′) ∈ S | X = x) = Pπ(G

π(X ′) ≤ z | X = x)

=
∑
x′∈X

Pπ(X
′ = x′ | X = x)Pπ(G

π(x′) ≤ z | X = x)

=
∑
x′∈X

Pπ(X
′ = x′ | X = x)Pπ(G

π(x′) ≤ z)

Then if we let FGπ(X′)(z) to be the c.d.f of random variable Gπ(X ′) up toz, we have

FGπ(X′)(z) =
∑
x′∈X

Pπ(X
′ = x′ | X = x)FGπ(x′)(z)

2.7.2 Scaling and translation

Suppose we konw the distribution of Gπ(X ′). Then what is the distribution of R+γGπ(X ′)?

This is an instance of a more general question: given a random variableZ ∼ ν and a

transformation f : RßR, how should we express the distribution of f(Z)in terms of f and ν?

Within this sense, we define pushforward distrbution as f#ν := D(f(Z)). Now, for r ∈ R
and γ ∈ [0, 1), we define bootstarp function br,γz 7→ r + γz. Then we have

(br,γ)#ν = D(r + γZ)

5

where Z ∼ ν. Now, let’s regard that ν = ηπ(x′) as a return distribution of state x′ and we

have correspoding random variable Gπ(x′), i,e. Z = Gπ(x′). Then, we have

(br,γ)#η
π(x′) = D(r + γGπ(x′)).

Proposition 2.12 (The distributional Bellman equation). Let ηπ be the return-

distribution function of policy π. Then, for any state x ∈ X , we have

ηπ(x) = Eπ [(br,γ)#η
π(X ′) | X = x] (1)

Just want to leave remark that Eπ [g(X
′) | X = x] =

∑
x′∈X Pπ(X

′ = x′ | X = x)g(x′)

for any real-value function g : X → R.

Proof.

It is also possible to omit these random variables and write Equation (1) purely in terms

of probability distributions, by making the expectation explicit:

ηπ(x) =
∑
a∈A

π(a | x)
∑
x′∈X

P (x′ | x, a)
∫
R
P R(dr|x, a)(br,γ)#ηπ(x′)

3 Chapter 3

3.1 The Monte Carlo Backup

Suppose we have K sample trajectories for state x and action a and reward r where each

trajectory have total Tk steps as follows.

{(xk,t, ak,t, xk,t)
Tk−1
t=0 }Kk=1 (2)

For now, assume that Tk = T and xk,0 = x0 for all k. We are interested in estimating the

expected return

Eπ

[
T−1∑
t=0

γtRt

]
= V π(x0).

Monte Carlo methods estimate the expected return by averaging the outcomes of observed

trajecoteries. Let us denote the sample reutnr for kth trajeoctyr as gk which is defined as

gk =

T−1∑
t=0

γtrk,t (3)

Then the sample-mean Monte Carlo estimate is the average of these K sample returns

V̂ π(x0) =
1

K

K∑
k=1

gk (4)

6

3.2 Incremental Learning

Rather than after sample K samples, then compute all at once, it is much more useful

to consider a learning model under which sample trajectories are processed sequentially.

We call this algorihtm as incremental algorithms. Consdier an infinite sequence of sample

trajectories

{(xk,t, ak,t, xk,t)
Tk−1
t=0 }k≥0 (5)

suppose that initial states {(xk,0)k≥0} may be different. At kth stage, the agent is given a

kth trajectory, and the algorihtm compues the sample return gk (Equation (4)) which we

called as Monte Carlo target. It then adjusts the value function of initial state xk,0 toward

this target (gk) by the following update rule,

V (xk,0)← (1− αk)V (xk,0) + αkgk

where αk is a time-varying step size.

Note that this incremental Monte Carlo Update rule only depends on the stating state

and the sampel return pairs:

(xk, gk)k≥0 (6)

We asume that the sample return gk is assumed drawn from the return distribution ηπ(xk).

Then we have the following update rule

V (xk)← (1− αk)V (xk) + αkgk (7)

This could be more expressed by

Vk+1(xk) = (1− αk)Vk(xk) + αkgk

Vk+1(x) = Vk(x) for x ̸= xk

(8)

3.3 Temporal-Difference Learning

Incremental learning algorihtms are useful since they update for eveyr episode. Tempoarl-

differnet learning (TD learning) is more fine-grained update version. It learn from sample

transitions, rather than entire trajectories.

Let us consdier a seuqen of smpale ransitions drwn independently as follows

(xk, ak, rk, x
′
k)k≥0 (9)

As with the incremental Monte Carlo algoithm, the update rule of temporal differnece

learning is

V (xk)← (1− αk)V (xk) + αk(rk + γV (x′
k)) (10)

We call the term rk + γV (x′
k) as the temporal-difference target, and by arrangin the term ,

we call the term rk + γV (x′
k)− V (xk) as the temproal-differnec error as

V (xk)← V (xk)αk(rk + γV (x′
k)− V (x′

k)).

Incremental Monte Carlo algorithm updates its value function estimate toward a fixed target

7

gk, but in TD learning we don’t have such fixed target. Temporal-difference learning instead

depends on the value function at the next state V (x′
k)being approximately correct. As such,

it is said to bootstrap from its own value function estimate.

3.4 From Values to Probabilities

We are highly interested in how we can learn the return-distribution function ηπ. Let’s first

take a scenario for binary reward, i.e. Rt ∈ {0, 1} and we are intesreind in distribution of

undiscounted finite-horizon return function

Gπ(x) =

H−1∑
t=0

Rt, X0 = x. (11)

Since the Gπ(x) takes an integer value between 0 to H, these form the support of the

probability distribution ηπ(x). To learn ηπ(x), we assigns a probability pi(x) ≥ 0 where∑H
i=0 pi(x) = 1 as

η(x) =

H∑
i=0

pi(x)δi (12)

We call this equation categortical representation. It’s kind of classification problem for given

state x. Now, let us consider the problem that we have a state-return pairs (xk, gk)k≥0 where

each gk is drawn from the distribution ηπ(xk). Now, we have categorical update rule as

pgk(xk)← (1− αk)pgk(xk) + αk

pi(xk)← (1− αk)pi(xk) for i ̸= gk
(13)

Combining equations (12) and (13) provide the following equation

η(xk)← (1− αk)η(xk) + αkδgk (14)

We call Equation (14) as undiscounted finite-horizon categorical Monte Carlo algorithm.

3.5 The Projection Step

For H steps binary rewards (NR = 2), the number of possible returns is NG = H + 1.

However, what if NR > 2 or if we have discounted factor γ? Noe that whwen γ is introduced,

then NG grows exponentially on H.

To handle this large set of possible returns, we inset a projection step prior to the mixture

update on Equation (14). We will consider return distributions that assign probability mass

tom ≥ 2 evenly spaced values or locations θ1 ≤ θ2 ≤ · · · ≤ θm where the gap ζm := θi+1 = θi

is identical. A common design is take θ1 = Vmin, θm = Vmax and set

ϑm =
Vmax − Vmin

m− 1

which is just identical gap. We express the corresponding return distribution η(x) as

8

weighted sum of Dirac deltas as follows.

η(x) =

m∑
i=1

pi(x)δθi

Now, consider a sample return g ∼ η(x) and we denote the g falls between θi∗ and θi∗+1

which could be defined as i∗ = argmaxi∈{0,··· ,m}{θi : θi ≤ g}. We write

Π−(g) = θi∗ , Π+(g) = θi∗+1.

Then define ζ(g) term corresponds to the distance of g to the two closest elements of the

support, scaled to lie in the interval [0, 1] as

ζ(g) =
g −Π−(g)

Π+(g)−Π−(g)
.

Then, we define stocastic projection of g as

Π±(g) =

Π−(g) with probability 1− ζ(g)

Π+(g) with probability ζ(g)

Use this projection to construct the update rule as

η(x)← (1− α)η(x) + αδΠ±(g)

which is similar to Equation (14). We could also write as

pi±(x)← (1− α)pi±(x) + α

pi(x)← (1− α)pi(x) for i ̸= i±

where i± is the index of location Π±g. Note that the stochastic projection could be improved

by putting both Π−(g) and Π+(g) information. We define deterministic projection as

η(x)← (1− α)η(x) + α
[
(1− ζ(g))δΠ−(g) + ζ(g)δΠ+(g)

]
(15)

Within this sense, we deinfe projection operator Πc that applies to the distribution δg as

Πcδg = (1− ζ(g))δΠ−(g) + ζ(g)δΠ+(g) (16)

We call this method the categorical Monte Carlo algorithm.

Under the right condition, Equation (15) is correlated with a return distribution η̂π(x)

where we have η̂π(x) = E
[
ΠcδGπ(x)

]
. In fact, we may write as

E
[
ΠcδGπ(x)

]
= Πcη

π(x)

where Πcη
π(x) is a distribution supported on {θ1, · · · , θm} produced by projecting all pos-

sible outcomes under distribution ηπ(x).

9

3.6 Categorical Temporal-Difference Learning

What TD learning do is

• learn from sample transition rather than full trajectory

• It learns by bootstrapping from its current return function estimates.

Suppse we have a transition data (x, a, r, x′). CTD maintains a return fiction estaimte η(x)

supported on evenly spaced locations {θ1, · · · , θm}. Let the return distribution of x′ as

η(x′) =

m∑
i=1

pi(x
′)δθi

then the intermediate target is

η̃(x) =

m∑
i=1

pi(x
′)δr+γθi

which can also be expressed in terms of a pushforward distribution (Recall Subsection 2.7)

as

η̃(x) = (br,γ)#η(x
′). (17)

Note that each particles of η(x′) are supports of {θ1, · · · , θm}, but pushing forward those

particles actually does not makes liying in the support of the original distribution. This

motivates the use of projection step Πc. We let notation θ̃i = r + γθi. Then, we have

Πcη̃(x) = Πc

m∑
j=1

pj(x
′)δr+γθi

=

m∑
j=1

pj(x
′)Πcδr+γθi

=

m∑
j=1

pj(x
′)
[
(1− ζ(θ̃j))δΠ−(θ̃j)

+ ζ(θ̃j)δΠ+(θ̃j)

]

=

m∑
i=1

δθi

 m∑
j=1

pj(x
′)ζi,j(r)


where ζi,j(r) = (1− ζ(θ̃j))1{Π−(θ̃j)=θj} + ζ(θ̃j)1{Π+(θ̃j)=θj}. Note that third equality holds

by defintion of determisitic projection (equation (16)). Also, the last line highlights that

the CTD target lies on a support of {θ1, · · · , θm}. Note that the assignment is obtained by

weighting the next-state probabilities pj(x
′) by the coefficients ζi,j(r). Using the projected

intermediate target, i.e. Πcη̃(x), we have the following CTD update rule:

η(x)← (1− α)η(x) + α(Πcη̃(x))

← (1− α)η(x) + α(Πc(br,γη(x
′)))

(18)

Now, note that η(x) and η(x′) are the categorical distribution which is a mixture of dirac-

delta function. Plugging its definition into Equation (18), we have the following update

10

rule:

pi(x)← (1− α)pi(x) + α

m∑
j=1

ζi,j(r)pj(x
′) (19)

With this form, we see that the CTD update rule adjusts each probability pi(x) of the return

distribution at state x toward a mixture of the probabilities ζi,j(r) of the return distribution

at the next state x′.

4 Chapter 4

We have defined value function V π as

V π(x) := Eπ

[∞∑
t=0

γtRt | X0 = x

]
,

and the bellman equation which make relationship between expected return of one state and

from its successor as

V π(x) := Eπ [R+ γV π(X ′) | X = x] .

Now, consider a state-indexed collection of real variables, written V ∈ RX , which we call

a value function estimate. By substituting V πfor V in the original Bellman equation, we

obtain the system of equations

V (x) = E [R+ γV (X ′) | X = x] , ∀x ∈ X . (20)

We know V π is the solution of above equations. Is there other solution?. Let’s investigate

this in this section. First, we define operators which is a function that map elements of a

space onto itself, such as this one (from estimates to estimates).

Definition 4.1 (Bellman operator). The bellman operator is the mapping Tπ :

RX → RX defined by

(TπV)(x) = Eπ [R+ γV (X ′) | X = x] . (21)

Bellman operator provides a good way to re-express the Equation (20) as

V = TπV.

We can also write the full expectation as

TπV = rπ + γPπV (22)

where rπ(x) = Eπ[R | X = x] and Pπ is the transition operator defined as

(PπV)(x) =
∑
a∈A

π(a | x)
∑
x∈X

PX (x′ | x, a)V (x′).

Note that the Eπ means expectation when π is fixed. We say vector Ṽ ∈ RX is a solution

11

to Equation (20) if it is unchanged by RHS transformation. Namely, it should be a fixed

point with respect to bellman operator Tπ. This also means V π is a fixed point of Tπ. We

will show V π is the only fixed point as following subsection.

4.1 Contration mappings

We need to define how close V and TπV are. So we deinfe metric as follows.

Definition 4.2 (Metric). Given a set M , a metric d : M ×M → R is a function that

satisfies, for all U, V,W ∈M ,

1. d(U, V) ≥ 0,

2. d(U, V) = 0 iff U = V ,

3. d(U, V) ≤ d(U,W) + d(W,V),

4. d(U, V) = d(V,U).

We call the pair (M,d) as a metric space.

In our setting, M = RX and we can thought of as a infinitry large vector with total |X |
entries. We define L∞ metric for V, V ′ ∈ RX as

||V − V ′||∞ = max
x∈X
|V (x)− V ′(x)| (23)

We will show Bellman operator Tπ is a contraction mapping with respect to this metric.

Informally, this means that its application to different value function estimates brings them

closer by at least a constant multiplicative factor, called its contraction modulus.

Definition 4.3 (Contraction modulus). Let (M,d) is a metric space. A function

O : M → M is a contration mapping with respect to d with contraction modulus

beta ∈ [0, 1) if for all U,U ′ ∈M ,

d(OU,OU ′) ≤ βd(U,U ′).

Proposition 4.4 (Contraction mapping of Bellaman operator). The operator Tπ :

RX → RX is a contraction mapping with respect to the L∞ metric on RX with

contraction modulus given by the discount factor γ. That is, for any two value

functions V, V ′ ∈ RX ,

||TπV − TπV ′||∞ ≤ γ||V − V ′||∞

Proof. To be continue.

12

Proposition 4.5 (Unique fixed point of contraction mapping). Let (M,d) be a met-

ric space and O : M →M be a contraction mapping. Then O has at most one fixed

point in M .

Propositions 4.4 and 4.5 guarantees the Bellman operator Tπ has a unique fixed point

V π.

Now, how to compute a fixed point? We can do it by iterative process. For given

contraction mapping O : M → M , we can approximate the fixed point by a sequence

(Uk)k≥0 by iterative process Uk+1 = MUk.

Proposition 4.6. Let (M.d) be a metric space and let O be a contraction mapping

with contraction modulus β ∈ [0, 1) and have a fixed point U∗ ∈ M . Then for any

initial point U0, the sequence (Uk)k≥0 generated by Uk+1 = OUk satisfies

d(Uk, U
∗) ≤ βkd(U0, U

∗) (24)

and particular d(Uk, U
∗)→ 0 as k →∞.

Proof. To be continue.

In case of Bellman operator Tπ, what Proposition 4.6 tells us is that for any initial point

V0 ∈ RX , the sequence (Vk)k≥0 converges to a fixed unique point V π.

4.2 The Distributional Bellman Operator

one important question of distributional reinforcement learning is that how to represent

probability distribution into computer memory.

Let’s recall random variable bellman equation (Proposition 2.8),

Gπ(x)
D
= R+ γGπ(X ′), X = x. (25)

Recall that Gπ(x) is a random variable sampled from a distribution ηπ(x) which is a return

distribution when initial state is x. The RHS of Equation 25 could be decomposed into

following three process.

1. Gπ(X ′): indexing of the collection of random variables Gπ by X ′.

2. γGπ(X ′): multiplication of the random variable G(X ′) with scalar γ.

3. R+ γGπ(X ′) addition of two random variables R and γG(X ′)

We can apply above process to any state-indexed collection of random variables Gπ =

(Gπ(x) : x ∈ X). Now, we introduce random vairable bellman operator as

(T πG)(x)
D
= R+ γG(X ′), X = x (26)

Equation (26) states that the application of the Bellman operator to G (evaluated at x;

the left-hand side) produces a random variable that is equal in distribution to the random

13

variable constructed on the right-hand side. Because this holds for all x, we think of T π as

mapping G to a new collection of random variables T πG.

Let’s recall Proposotion 2.11 to define bellman operator at probability distribution.

Definition 4.7 (Distribtuional Bellman Operator T π). The distributional bellman

operator T π : P(R)X →P(R)X is mapping defined by

(T πη)(x) = Eπ [(br,γ)#η(X
′) | X = x] (27)

Note that distributional bellman opertoar maps between distribution and distribution.

Wtih T π and Proposition 4.5, we could say its fixed point is ηπ and its unique.

Proposition 4.8 (Unique fixec point of distribtuional bellman operator). The

return-distribution function ηπ satisfies

ηπ = T πηπ

and is the unique fixed point of the distributional Bellman operator T π.

14

	Chapter 1
	Chapter 2
	Random Variables and Their Probability Distributions
	Markov Decision Processes
	The Pinball Model
	The Return
	Properties of the Random Trajectory
	The Random-Variable Bellman Equation
	From Random Variables to Probability Distributions
	Mixing
	Scaling and translation

	Chapter 3
	The Monte Carlo Backup
	Incremental Learning
	Temporal-Difference Learning
	From Values to Probabilities
	The Projection Step
	Categorical Temporal-Difference Learning

	Chapter 4
	Contration mappings
	The Distributional Bellman Operator

