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Machine Learning Safety

Black swans: rare but extremely high-risk events [Tal10]

1. The COVID-19 pandemic [Ant20].

2. Automated trading systems that overreact to market anomalies
[KKST17, Phi21, Sta22].

3. Unexpected bankruptcies [WPM14, ABG23].

4. Failures in monitoring hypoglycemic events in healthcare [WLY+23].

Forecasting black swans are still vulnerable regardless of an algorithm’s representation
capacity or scalability [Cho19, SN20, HZC21, LQL+23, YZLL24].
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A Hypothesis on Black Swan

Current approaches:

● algorithm improvement based on conventional belief that such events primarily arise
from dynamic, time-varying environments
[Pre19, ABK20, DMS21, WDFLP21, BD24, Jin24]

This talk claims the above approach should be re-examined since conventional belief
might be wrong.

Hypothesis 1

Black swans can originate from misperceptions of an event’s reward and likelihood, even
within static, stationary environments.
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Example

Lehman Brothers Bankrupt (2008)

● Most significant black swan event in the financial industry [WPM14]

● The firm declared bankruptcy within 72 hours without any precursor [MR09], and the
only factor that changed during those three days was investors’ perception of the
company [Hou23, Maw14, FS14]

● The bank’s loss endurance, evaluated at 11.7% by the U.S. government, stayed
stationary, static over the 72 hours.

● Investors making rational decisions on the false market perception which appeared
rational at the time but proved irrational by correcting their perception in hindsight
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Main Contribution

● Define black swan events in stationary environments as S-BLACK SWAN.

(Informal)An s-black swan event is a state-action pair where humans mis-
perceive both its likelihood and reward. It is perceived as impossible, despite
occurring with small probability, while its reward is overestimated relative to its
true value in a stationary environment.

● A case study on how s-black swan emerge and cause suboptimality gaps in
various MDP settings, such as bandit (Theorem 8), small state spaces (Theorem 9),
and large state spaces (Theorem 10).
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Main Contribution

● Our main finding (Theorem 14) shows that even with zero estimation error, a lower
bound on approximating the true optimal policy remains due to perception error,
influenced by reward misperception, the size of the s-black swan set, and their
minimum probability of occurrence.

● Theorem 15 examines s-black swan hitting time provides an guide on how often a
human should correct their internal perception.

● Suggestions on design of future safe machine learning algorithms.
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Preliminary

Markov Decision Process.
● Definition: M= ⟨S,A,P,R,T ⟩,

● S: State space, A: action space, T : horizon length.
● P = {Pt}Tt=1,Pt ∶ S × A →∆(S) is a transition probability.
● R = {Rt}Tt=1,Rt ∶ S × A → R is a reward function.

● Pπ(s,a): visitation probability of (s, a) by planning with π in the world P.

● If Pt1 = Pt2 ,Rt1 = Rt2 for any t1, t2 ∈ [T ], we say stationary environment or otherwise
we say non-statinoary environment.

● Setting: With policy (decision) π ∶ S →∆(A), the agent gathers a trajectory
{s0, a0, r1, s1, a1, r2,⋯, sT−1, aT−1, rT−1, sT} where
at ∼ π(⋅∣st), st+1 ∼ Pt(⋅∣st , at), rt = Rt(st , at).
● Goal: find optimal π∗ that maximizes the value function
V π
M ∶= Eπ [∑T−1

t=0 Rt(st , at)∣Pt , ].
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Preliminary

Following three theorems lay groundworks for misperception in Hypothesis 1.
1. Expected Utility Theory

● Explains the human’s rational choice under uncertainty [vN44].

● Outcome space O = {o1,o2,⋯,oK}.
● Utility function g ∶ O → R represents gain or loss of outcomes.

● Choice c ∈ C: returns outcomes oi with probabilities p
(c)
i .

● EUT evalutes the riskiness of choice c as V (c) = ∑K
i=1 g(oi)pi , then human choose

c⋆ that maxc∈C V (C) [Rab13].

● (Ex) stock market investment scenario:
● O = {Economic Boom (EB),Economic Recession (ER)}
● g(EB) = +100, g(ER) = −1000.
● C = {invest in stocks, invest in bonds, keep cash} with different probabilities

(p(c)1 ,p
(c)
2 ).
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Preliminary

2. Prospect Theorem

● EUT fails to account for empirical observations from psychological experiments
[DT16, PAPAB19, WS00, VYD05, vdMKV22] and economic cases
[Rog98, WW07, Bet22] that demonstrate human irrationality.

● Internally distorts event probability p
(c)
i and event value g(oi) for any c ∈ C , ∀i ∈ [k].

● (ex1) −1M or +1M. (ex2) buying Powerball lottery.

● Probability distortion function w ∶ [0,1] → [0,1].
● Value distortion function u ∶ R→ R.
● PT evaluates the choice c as V (c) = ∑K

i=1 u(g(oi))w(p
(c)
i ) [KT13, FW97].
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Preliminary

3. Cumulative Prospect Theorem

● To enhance mathematical rigor—specifically (ensuring that distorted probabilities
still sum to one), Prospect Theory (PT) was further revised into Cumulative
Prospect Theory (CPT).

● CPT distorts the cumulative probability rather than the probability itself.

● CPT evaluates the choice c as V (c) = ∑K
i=1 u(g(oi))(w(∑i

j=1 p
(c)
j ) −w(∑

i−1
j=1 p

(c)
j )).
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Preliminary

3. Cumulative Prospect Theorem

Example 1 (Insurance policies)

Consider an example where the probability of an insured risk is 1%, the potential loss is
1,000, and the insurance premium is 15. According to CPT, most would opt to pay the
15 premium to avoid the larger loss.

● Two-step Markov Decision Process.

● S = (sbase , spreminum, srisk) → outcome space O.
● A = {ap, anp} → choice set C.
● EUT returns

● V (anp) = −1000 ⋅ 0.01 = −10
● V (ap) = −15 ⋅ 1 = −15

● But human choose ap ,.
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Value distortion function

Figure: Value distortion
function. Gray line represents
y = x .

Definition 2 (Value Distortion Function)

The value distortion function u is defined as:

u(x) =
⎧⎪⎪⎨⎪⎪⎩

u+(x) if x ≥ 0,
u−(x) if x < 0,

where

● u+ ∶ R≥0 → R≥0 is non-decreasing, concave with
limh→0+(u+)′(h) ≤ 1
● u− ∶ R≤0 → R≤0 is non-decreasing, convex with
limh→0−(u−)′(h) > 1
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Figure: Value distortion
function. Gray line represents
y = x .

Definition 4 (Value Distortion Function)

The value distortion function u is defined as:

u(x) =
⎧⎪⎪⎨⎪⎪⎩

u+(x) if x ≥ 0,
u−(x) if x < 0,

where

● u+ ∶ R≥0 → R≥0 is non-decreasing, concave with
limh→0+(u+)′(h) ≤ 1
● u− ∶ R≤0 → R≤0 is non-decreasing, convex with
limh→0−(u−)′(h) > 1

15 / 40



Probability distortion function

Figure: Probability distortion
function. Gray line represents
y = x .

Definition 5 (Probability Distortion Function)

The probability distortion function w is defined as:

w(pi) =
⎧⎪⎪⎨⎪⎪⎩

w+(pi) if g(xi) ≥ 0,
w−(pi) if g(xi) < 0,

where w+,w− ∶ [0,1] → [0,1] satisfy:
● w+(0) = w−(0) = 0, w+(1) = w−(1) = 1
● w+(a) = a and w−(b) = b for some a,b ∈ (0,1)
● (w+)′(x) is decreasing on [0, a) and increasing
on (a,1] and (w−)′(x) is increasing on [0,b)
and decreasing on (b,1].
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Emergence of S-BLACK SWAN in Sequential Decision Making

Case studies to substantiate Hypothesis 1. The goal of this section is to see how policy
deviates due to misperception.

● Function u distorts the reward R(s, a)
● Function w distorts the transition probabilities {P(s ′∣s, a)}∀s′∈S where s ′ is the next
state.

● LetM represent the real-world, and define the distorted MDP
Md ∶= ⟨S,A,w(P),u(R), γ⟩, where u and w introduce distortions in the R and P of
M.

19 / 40



Emergence of S-BLACK SWAN in Sequential Decision Making

Case 1. Contextual Bandit (T = 1) [LS20]

Theorem 8 (One-Step Optimality Deviation)

If T = 1, then the optimal policy in the MDPM is identical to the optimal policy in the
distorted MDPMd .

● Somewhat counterintuitive. Recall Example 1.

● Reason: u preserves ordering, i.e.,
r(sloss) < r(spremium) < r(sbase) → u−(r(sloss)) < u−(r(spremium)) < u−(r(sbase)),
since u− is non-decreasing.

● Suggests that a short decision horizon may reduce the impact of human irrationality.
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Emergence of S-BLACK SWAN in Sequential Decision Making

Case 2. ∣S∣ = 2 when T > 1

Theorem 9 (Multi-step Optimality Deviation with ∣S∣ = 2)

If ∣S∣ = 2, then the optimal policy from the MDPM is also identical to the optimal policy
of the distorted MDPMd for all t ∈ [T ].

● Counterintuitive due to model-error propagation [JFZL19].

● Reason: w preserves ordering, i.e., if P(s1∣s, a) > P(s2∣s, a), then
w(P(s1∣s, a)) > w(P(s2∣s, a)), where S = {s1, s2}.
● Suggests that a small state space requires relatively low informational complexity to
determine the real-world optimal action.
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Emergence of S-BLACK SWAN in Sequential Decision Making

Case 3. ∣S∣ = 3 with unbiased reward perception

Theorem 10 (Two-step Optimality Deviation with ∣S∣ = 3)

If ∣S∣ = 3 and T = 2, there exists a transition probability P and a reward function R such
that the optimal policy of the MDPM differs from that of the distorted MDPMd .

● Now aligns with the empirical observation in model-based reinforcement learning;
increasing suboptimality is caused by model error propagation [JFZL19]

Summary.

Theorems 8, 9, and 10 demonstrate that the discrepancy between π†,⋆ and π⋆ in-
creases as the complexity of the environment (S) or the horizon length (T ) increases.
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Ground MDP, Human MDP, Human-Estimation MDP

To explore Hypothesis 1, we propose three different MDPs.
1. Ground MDP

● stationary ground MDP (GMDP)M is an abstraction of real-world environments
without information loss.

● mathematically identical withM defintion.
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Ground MDP, Human MDP, Human-Estimation MDP

2. Human MDP
● M† ∶= ⟨S,A,P†,R†, γ,T ⟩

● P†,π: misperceived visitation probability Pπ(s, a) through the function w .
● R†: misperceived reward function R(s, a) through the function u.

● Internal assumption: S† = S and A† = A.

● M† perceivesM by u,w :

∫ P†,π(s, a) =
⎧⎪⎪⎨⎪⎪⎩

w+( ∫ Pπ(s, a)) if R(s, a) ≥ 0
w−( ∫ Pπ(s, a)) if R(s, a) < 0

(1)

R†(s, a) =
⎧⎪⎪⎨⎪⎪⎩

u+(R(s, a)) if R(s, a) ≥ 0
u−(R(s, a)) if R(s, a) < 0

(2)

● V π
M†(s) ∶= E [∑T

t=0 γ
tR†(st , at)∣P†, π, s0 = s].
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Ground MDP, Human MDP, Human-Estimation MDP

2. Human Estimation MDP

● why distortions occur in visitation probability (Pπ) rather than transition probability
(P).

● reason: (s, a) is an event unit, and a distortion in transition probability implies a
distortion in the state space for a given previous state and action pair.

● The central question is how distortions in visitation probability relate directly to data
collection.

Lemma 11

For a givenM, there always exists a function h ∶ S → S such that
w (∫ Pπ(s, a)) = ∫ Pπ(h(s), a) holds for any function w. That is
D† = {h(st), at ,u(rt),h(st+1)}T−1t=0 is sampled fromM†
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Ground MDP, Human MDP, Human-Estimation MDP

3. Human-Estimation MDP
● M̂† = ⟨S,A, P̂†, R̂†, γ,T ⟩.

● P̂†,π: Estimated visitation probability
of P†,π by dataset D†.

● R̂†: Estimated reward of R† by by
dataset D†.

● Estimation process is the same as
estimation of the generative model in
model-based reinforcement learning
[GAMK13, SWW+18, AKY20, Kak03].

● V π
M̂†(s) ∶=

E [∑T
t=0 γ

t R̂†(st , at)∣P̂†, π, s0 = s].

Environment

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
M perception⇐ÔÔÔ⇒

ϵr ,ϵd
M† estimation⇐ÔÔÔ⇒

κr ,κd

M̂†

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Agent

Figure: The agent and environment
intersect with perception.
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S-BLACK SWAN

1. Discrete state and action space

● Order statistics : R[1] ≤ R[2] ≤ ⋯ ≤ R[∣S∣∣A∣] and Pπ
[1] ≤ P

π
[2] ≤ ⋯ ≤ P

π
[∣S∣∣A∣]

.

● R[Ir (s,a)] = R(s, a) and Pπ
[Ip(s,a)]

= Pπ(s, a)

Definition 12 (s-black swan - Discrete State and Action Space)

Given distortion functions u,w and constants Cbs ≫ 0 and ϵbs > 0, if (s, a) satisfies:
1. (High-risk): R[Ir (s,a)] − u−(R[Ir (s,a)]) < −Cbs .

2. (Rare): w− (∑Ip(s,a)
j=1 Pπ

[j]) = w
− (∑Ip(s,a)−1

j=1 Pπ
[j]), yet 0 < P

π
[Ip(s,a)]

< ϵbs .
then we define (s, a) as s-black swan .
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S-BLACK SWAN

Let’s dig into the definition.

1. (High-risk): R[Ir (s,a)] − u−(R[Ir (s,a)]) < −Cbs

● R[Ir (s,a)]: Ground truth reward of an event (s, a).
● u−(R[Ir (s,a)]): Perceived reward by agent.

● R[Ir (s,a)] + Cbs < u−(R[Ir (s,a)]): Overestimation (optimistic perception) of an event’s
loss.

● Cbs is given constant that quantifies distortion of u−.
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S-BLACK SWAN

Let’s dig into the definition.

2. (Rare): w− (∑Ip(s,a)
j=1 Pπ

[j ]) = w− (∑Ip(s,a)−1
j=1 Pπ

[j ]), yet 0 < Pπ
[Ip(s,a)]

< ϵbs

● Pπ
[Ip(s,a)]

: Ground truth visitation probability of an event (s, a).

● ∑Ip(s,a)
j=1 Pπ

[j]: Ground truth cumulative visitation probability.

● w−(∑Ip(s,a)
j=1 Pπ

[j]): Perceived cumulative visitation probability by agent.

● w−(∑Ip(s,a)
j=1 Pπ

[j]) = w
−(∑Ip(s,a)−1

j=1 Pπ
[j]): The agent perceives the event (s, a) as

infeasible.

● 0 <Pπ
[Ip(s,a)]

< ϵbs : Feasible but with a small probability.

● ϵbs is a given constant that also quantifies distortion of w−.
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S-BLACK SWAN

2. Continuous state and action space

● Suppose R ∶ S × A → R is bijective.

● Recall Pπ ∶ S × A → [0,1].
● The probability Pr ∶= R−1 ○ Pπ ∶ R→ [0,1] denotes the probability of a feasible
reward induced by policy π.

Definition 13 (s-black swan - Continuous State and Action Space)

Given distortion functions u,w and constants Cbs ≫ 0 and ϵbs > 0, if (s, a) satisfies:
1. R(s, a) − u−(R(s, a)) < −Cbs .

2. dw−(x)
dx
∣
x=F(R(s,a))

⋅ Pr(r = R(s, a)) = 0, yet 0 < Pr(r = R(s, a)) < ϵbs ,
where F (r) ∶= ∫ r

−∞
dPr is the cumulative distribution of Pr , then we define (s, a) as

s-black swan .
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S-BLACK SWAN
1. The role of Cbs and ϵbs .
● magnitude of distortion
● the threshold of “safe perception”

● B: the collection of all s-black swan .
● If u−(r) < r + Cbs for ∀r then B = ∅.
● If 0 < w−(p) < ϵbs for ∀p then B = ∅.

● w−⋆ and u−⋆ : w
− and u− that result in B = ∅ → safe perception

𝑢!

𝑢"

𝑢(𝑅)

𝑅

𝑢∗,"

−𝑅!"#

𝐶$%

−𝑅$%

−𝑅!"#

(a) distortion functions u,u⋆.

∫ 𝑃!

𝑤"

𝑤#

𝑤(∫ 𝑃!)

< 𝜖!"𝑤∗,#

−𝑅!"

(b) distortion functions w ,w⋆

Figure: distortion functions.
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S-BLACK SWAN

𝑢!

𝑢"

𝑢(𝑅)

𝑅

𝑢∗,"

−𝑅!"#

𝐶$%

−𝑅$%

−𝑅!"#

Figure: distortion functions u,u⋆.

2. The role of −Rbs .

● intersection between u−(r) and r + Cbs .

● [−Rmax ,−Rbs] is feasible black swan
candidates.

● −Rbs controls the size of feasible black
swan set.
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S-BLACK SWAN

Theorem 14 (Convergence of value estimation gap but lower bound on value
perception gap)

The asymptotic convergence of the value function estimation holds as follows,

V π
M̂†(s) → V π

M†(s) a.s. as T →∞, ∀s, π ∈ S ×Π.

However, under specific conditions on ϵbs , ϵ
min
bs ,Rbs , the lower bound of value perception

gap as follows.

∣V π
M†(s) −V π

M(s)∣ = Ω
⎛
⎝
((Rmax − Rbs) ϵmin

bs − Rbsϵbs) (Rmax − Rbs)Cbs

R2
max

⎞
⎠
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S-BLACKSWAN
Two Takeaways of Theorem 14

Takeaway 1: how theorem matches with our intuition

V π

M̂†
(s) → V π

M†(s) a.s. as T →∞
● the value estimation error converges to zero as the agent rolls out longer
trajectories.

∣V π
M†(s) −V π

M(s)∣ = Ω(
((Rmax−Rbs)ϵmin

bs −Rbsϵbs)(Rmax−Rbs)Cbs

R2
max

)

● the value perception gap has a non-zero lower bound, regardless of the
horizon length.

● if u−(x) → u−⋆(x) and w−(x) → w−⋆ (x), then Rbs → Rmax and ϵbs → 0, then
B → ∅
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S-BLACK SWAN
Takeaway 2: three factors influence suboptimality gap

∣V π
M†(s) −V π

M(s)∣ = Ω(
((Rmax−Rbs)ϵmin

bs −Rbsϵbs)(Rmax−Rbs)Cbs

R2
max

)

● Three factors that increase lower bounds
● Greater distortion in reward perception (i.e., larger Cbs)
● Larger feasible set of s-black swan (i.e., larger (Rmax − Rbs))
● Higher minimum probability of s-black swan occurrence (i.e., larger ϵmin

bs )

Summary.

Theorem 14 concludes that even with zero estimation error, a lower bound on ap-
proximating the true value function remains, and this lower bound increases as above
three factors become more pronounced.
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∣V π
M†(s) −V π

M(s)∣ = Ω(
((Rmax−Rbs)ϵmin

bs −Rbsϵbs)(Rmax−Rbs)Cbs

R2
max
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S-BLACK SWAN

Next natural question: how to decrease the lower bound?

● how can an agent can learn to self-correct toward a safe perception, i.e., u− → u−⋆
and w− → w−⋆ .

● we answer when to update the perception?

● may refined to: What is the probability of encountering s-black swan if the agent
takes t steps?

Theorem 15 (s-black swan hitting time)

Assume Pπ⋆(s ′ ∣ s) > 0 for any s, s ′ ∈ S, indicating that the one-step state reachability
equipped with optimal policy is non-zero, and consider that one step corresponds to a

unit time. Then, if the agent takes t steps such that t ≥ log ( δ
pmin
) / log(1 − pmax) + 1,

where pmin = Rmax−Rbs
2Rmax

ϵmin
bs and pmax = Rmax−Rbs

2Rmax
ϵbs , it will encounter s-black swan with

at least probability δ ∈ (0,1].
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S-BLACK SWAN

Takeaway: How often a human should correct their internal perception

● A large perception gap (Rmax − Rbs) and higher minimum probability of
black swan events (ϵmin

bs ) require more frequent execution of the
self-perception correction algorithm.
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Suggestions for safety algorithm design

1. Emphasize robustness in data, rather than algorithms

● Practically, E ∈ Dreal world and Dreal world → Dtrain, then E ∉ Dtrain.

● When generalizing ptrain → preal world, it is advisable to overestimate the likelihood of
events considered to have zero probability in ptrain that could pose high risk.

● While foundation models offer a strong baseline, it’s essential to modify the
generative process to focus on potential “zero probability events” that could pose
high risks.
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2. Make your policy sparse

● Antifragility: The ability to gain from small uncertainties to prevent larger,
unforeseen uncertainties in the future.

● How to benefit from uncertainty, rather than merely avoiding it.

● Enhancing robustness against environmental changes:

min
π
∣V π
Mk+1

−V π
Mk
∣

● Benefit from environmental changes :

Definition 16 (Optimization problem: benefits from uncertainty)

We define an optimization problem that benefits the environmental changes for fixed
policy as

max
π
(V π
Mk+1

−V π
Mk
) such that V π

Mk+1
≥ V π
Mk

(3)
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Prevent Blackswan by antifragility

Theorem 17 (Short Horizon requires sparse policy)

For H = 1, the policy π satisfies (1)-sparse policy, i.e zero-hot vector, is the unique
solution.

Definition 18 (Sparse Policy)

Let the action space be A = {a(1), a(2), . . . , a(∣A∣)}. A policy π is called n-sparse at state s
if it assigns positive probability to n actions. Formally, let I = {i ∣ π(a(i)∣s) > 0}. Then π
is (n)-sparse at s if ∣I∣ = n.

Theorem 19 (Longer Horizon also requires sparse policy)

For H ≤ O(log(∣S∣∣A∣)), the policy π satisfies (1)-sparse policy

Why sparse?:
● Probability is not important, the event count is important.
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Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen.
Minimax pac bounds on the sample complexity of reinforcement learning with a
generative model.
Machine learning, 91:325–349, 2013.

Morgan Housel.
Penguin, 2023.

Xin He, Kaiyong Zhao, and Xiaowen Chu.
Automl: A survey of the state-of-the-art.
Knowledge-based systems, 212:106622, 2021.

40 / 40



Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.
When to trust your model: Model-based policy optimization.
Advances in neural information processing systems, 32, 2019.

Ming Jin.
Preparing for black swans: The antifragility imperative for machine learning.
arXiv preprint arXiv:2405.11397, 2024.

Sham Machandranath Kakade.
On the sample complexity of reinforcement learning.
University of London, University College London (United Kingdom), 2003.

Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun.
The flash crash: High-frequency trading in an electronic market.
The Journal of Finance, 72(3):967–998, 2017.

Daniel Kahneman and Amos Tversky.
Prospect theory: An analysis of decision under risk.

40 / 40



In Handbook of the fundamentals of financial decision making: Part I, pages 99–127.
World Scientific, 2013.

Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen
Zhou.
Trustworthy ai: From principles to practices.
ACM Computing Surveys, 55(9):1–46, 2023.

Tor Lattimore and Csaba Szepesvári.
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